Mathematical statistics

April 19th, 2019

Lecture 22: CIs for standard deviation

Mathematical statistics

8.1 Basic properties of confidence intervals (CIs)

- Interpreting Cls
- General principles to derive CI
- 8.2 Large-sample confidence intervals for a population mean
 - Using the Central Limit Theorem to derive CIs
- 8.3 Intervals based on normal distribution
 - Using Student's t-distribution
- 8.4 CIs for standard deviation

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants *a*, *b* such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 0.95$$

• Manipulate these inequalities to isolate θ

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 0.95$$

- Section 8.1
 - Normal distribution
 - σ is known
- Section 8.2
 - Normal distribution
 - ightarrow use Central Limit Theorem ightarrow needs n>30
 - σ is known
 - \rightarrow replace σ by $s \rightarrow$ needs n > 40
- Section 8.3
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

Prediction intervals

Mathematical statistics

æ

イロト イヨト イヨト イヨト

- We have available a random sample $X_1, X_2, ..., X_n$ from a normal population distribution
- We wish to predict the value of X_{n+1} , a single future observation.

This is a much more difficult problem than the problem of estimating $\boldsymbol{\mu}$

- When $n \to \infty$, $\bar{X} \to \mu$
- Even when we know μ , X_{n+1} is still random

A natural estimate of X_{n+1} is

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n}$$

Question: What is the uncertainty of this estimate?

→ < ∃ →</p>

$$T = \frac{\overline{X} - X_{n+1}}{S\sqrt{1 + \frac{1}{n}}} \sim t \text{ distribution with } n - 1 \text{ df}$$

Mathematical statistics

æ

イロト イ団ト イヨト イヨト

A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$\overline{x} \pm t_{\alpha/2,n-1} \cdot s \sqrt{1 + \frac{1}{n}} \tag{8.16}$$

The prediction level is $100(1 - \alpha)\%$.

Cls for variance and standard deviation

Mathematical statistics

æ

Chi-squared distribution

The pdf of a Chi-squared distribution with degree of freedom $\nu,$ denoted by $\chi^2_{\nu},$ is

$$f(x) = \begin{cases} \frac{1}{2^{1/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} & x > 0\\ 0 & x \le 0 \end{cases}$$

Mathematical statistics

If X_1, X_2, \ldots, X_n is a random sample from the normal distribution $\mathcal{N}(\mu, \sigma^2)$, then

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2_{n-1}$$

/⊒ ▶ ◀ ⊒ ▶ ◀

Important: Chi-squared distribution are not symmetric

Mathematical statistics

Tab	le A.7	Critical Va	alues for C	hi-Square	d Distribu	utions			\sim	
					α		0		$\chi^2_{\alpha,\nu}$	
ν	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18,474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5,578	17.275	19.675	21.920	24.724	26.755
12	3.074	3,571	4.404	5.226	6.304	18,549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7,790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558

Mathematical statistics

 χ^2_{ν} density curve Shaded area = α

Cls for standard deviation

We have

$$P\left(\chi_{1-\alpha/2,n-1}^{2} < \frac{(n-1)S^{2}}{\sigma^{2}} < \chi_{\alpha/2,n-1}^{2}\right) = 1 - \alpha$$

Play around with these inequalities:

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

白マイド・

A 100 $(1 - \alpha)$ % confidence interval for the variance σ^2 of a normal population has lower limit

$$(n-1)s^2/\chi^2_{\alpha/2,n-1}$$

and upper limit

$$(n-1)s^2/\chi^2_{1-\alpha/2,n-1}$$

A confidence interval for σ has lower and upper limits that are the square roots of the corresponding limits in the interval for σ^2 .

伺 ト イヨ ト イヨト

Practice problems

Mathematical statistics

▲ 御 ▶ ▲ 臣

æ

≣⇒

Problem

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

Assume the distribution is normal, construct the 95% confidence interval for the population mean.

Table A.5 Critical Values for t Distributions

α										
v	.10	.05	.025	.01	.005	.001	.0005			
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62			
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598			
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924			
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610			
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869			
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959			
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408			
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041			
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781			
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587			
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437			
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318			
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221			
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140			
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073			
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015			
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965			

Mathematical statistics

Problem

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

(a) Assume the distribution is normal, construct the 95% confidence interval for the population mean.
(b) Assume that another beer is sampled from the same distribution, construct the 95% prediction interval for the alcohol percentages of that beer.

Ρ	ro	b	lem

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

(a) Assume the distribution is normal, construct the 95% confidence interval for the population mean.
(b) Construct 95% confidence interval for the population standard deviation σ

Tab	le A.7	Critical Va	alues for C	hi-Square	d Distribu	utions			\sim	
					α		0		$\chi^2_{\alpha,\nu}$	
ν	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18,474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5,578	17.275	19.675	21.920	24.724	26.755
12	3.074	3,571	4.404	5.226	6.304	18,549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7,790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558

Mathematical statistics

 χ^2_{ν} density curve Shaded area = α

Example 2

- **35.** A sample of 14 joint specimens of a particular type gave a sample mean proportional limit stress of 8.48 MPa and a sample standard deviation of .79 MPa (Characterization of Bearing Strength Factors in Pegged Timber Connections, *J. Struct. Engrg.*, 1997: 326–332).
 - **a.** Calculate and interpret a 95% lower con dence bound for the true average proportional limit stress of all such joints. What, if any, assumptions did you make about the distribution of proportional limit stress?
 - **b.** Calculate and interpret a 95% lower prediction bound for the proportional limit stress of a single joint of this type.

伺 ト イヨト イヨト

Problem

Suppose that against a certain opponent, the number of points a basketball team scores is normally distributed with unknown mean μ and unknown variance σ^2 . Suppose that over the course of the last 10 games, the team scored the following points:

 $59, \ 62, \ 59, \ 74, \ 70, \ 61, \ 62, \ 66, \ 62, \ 75$

- Construct a 95% confidence interval for μ .
- Now suppose that you learn that σ² = 25. Construct a 95% confidence interval for μ. How does this compare to the interval in (a)?