Mathematical statistics

May $1^{\text {st }}, 2019$
Lecture 27: Testing and p-values

Att.

- Final exam:

Wednesday, 5/29/2019, Wednesday, 10:30am -12:30pm Ewing Hall Room 101

- Course evaluation
- Last homework due next Friday

Key steps in statistical inference

- Understand statistical models [Chapter 6]
- Come up with reasonable estimates of the parameters of interest [Chapter 7]
- Quantify the confidence with the estimates [Chapter 8]
- Testing with the parameters of interest [Chapter 9]

Contexts

- The central mega-example: population mean μ
- Difference between two population means

Chapter 9: Overview

9.1 Hypotheses and test procedures

- test procedures
- errors in hypothesis testing
- significance level
9.2 Tests about a population mean
- normal population with known σ
- large-sample tests
- a normal population with unknown σ
9.4 P-values

Hypothesis testing for one parameter

(1) Identify the parameter of interest
(2) Determine the null value and state the null hypothesis
(3) State the appropriate alternative hypothesis
(9) Give the formula for the test statistic
(5) State the rejection region for the selected significance level α
(0) Compute statistic value from data
((Decide whether H_{0} should be rejected and state this conclusion in the problem context

- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$

Normal population with known σ

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

General rule

z curve (probability distribution of test statistic Z when H_{0} is true)

Large-sample tests

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)
[Does not need the normal assumption]

Null hypothesis: $H_{0}: \mu=\mu_{0}$
Test statistic value: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
Alternative Hypothesis

Rejection Region for a Level α Test

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

$$
\begin{aligned}
& t \geq t_{\alpha, n-1} \text { (upper-tailed) } \\
& t \leq-t_{\alpha, n-1} \text { (lower-tailed) }
\end{aligned}
$$

$$
\text { either } t \geq t_{\alpha / 2, n-1} \text { or } t \leq-t_{\alpha / 2, n-1} \text { (two-tailed) }
$$

[Require normal assumption]

- Parameter of interest: $\mu=$ true average activation temperature
- Hypotheses

$$
\begin{aligned}
& H_{0}: \mu=130 \\
& H_{a}: \mu \neq 130
\end{aligned}
$$

- Test statistic:

$$
z=\frac{\bar{x}-130}{1.5 / \sqrt{n}}
$$

- Rejection region: either $z \leq-z_{0.005}$ or $z \geq z_{0.005}=2.58$
- Substituting $\bar{x}=131.08, n=25 \rightarrow z=2.16$.
- Note that $-2.58<2.16<2.58$. We fail to reject H_{0} at significance level 0.01 .
- The data does not give strong support to the claim that the true average differs from the design value.

P-values

Remarks

- The common approach in statistical testing is:
(1) specifying significance level α
(2) reject/not reject H_{0} based on evidence
- Weaknesses of this approach:
- it says nothing about whether the computed value of the test statistic just barely fell into the rejection region or whether it exceeded the critical value by a large amount
- each individual may select their own significance level for their presentation
- We also want to include some objective quantity that describes how strong the rejection is $\rightarrow \mathrm{P}$-value

Practice problem

Problem

Suppose μ was the true average nicotine content of brand of cigarettes. We want to test:

$$
\begin{aligned}
& H_{0}: \mu=1.5 \\
& H_{a}: \mu>1.5
\end{aligned}
$$

Suppose that $n=64$ and $z=\frac{\bar{x}-1.5}{s / \sqrt{n}}=2.1$. Will we reject H_{0} if the significance level is
(a) $\alpha=0.05$
(b) $\alpha=0.025$
(c) $\alpha=0.01$
(d) $\alpha=0.005$

P-value

Level of Significance $\boldsymbol{\alpha}$	Rejection Region	Conclusion
.05	$z \geq 1.645$	Reject H_{0}
.025	$z \geq 1.96$	Reject H_{0}
.01	$z \geq 2.33$	Do not reect H_{0}
.005	$z \geq 2.58$	Do not reject H_{0}

Question: What is the smallest value of α for which H_{0} is rejected.

P-value

DEFINITION The \boldsymbol{P}-value (or observed significance level) is the smallest level of significance at which H_{0} would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

1. P-value $\leq \alpha \Rightarrow$ reject H_{0} at level α.
2. P-value $>\alpha \Rightarrow$ do not reject H_{0} at level α.

DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level α (as before, the desired type I error probability).
Then reject H_{0} if P-value $\leq \alpha$; do not reject H_{0} if P-value $>\alpha$

Remark: the smaller the P -value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

P-values for z-tests

Figure 9.7 Determination of the P-value for a z test

Practice problem

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is $245 \mu \mathrm{~m}$. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of $246.18 \mu \mathrm{~m}$ and a sample standard deviation of $3.60 \mu \mathrm{~m}$.
Does this data suggest that true average wafer thickness is something other than the target value?

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
						$M 97$				

Mathematical statistics

P-values for z-tests

1. Parameter of interest: $\mu=$ true average wafer thickness
2. Null hypothesis: $\quad H_{0}: \quad \mu=245$
3. Alternative hypothesis: $\quad H_{\mathrm{a}}: \quad \mu \neq 245$
4. Formula for test statistic value: $z=\frac{\bar{x}-245}{s / \sqrt{n}}$
5. Calculation of test statistic value: $\quad z=\frac{246.18-245}{3.60 / \sqrt{50}}=2.32$
6. Determination of P-value: Because the test is two-tailed,

$$
P \text {-value }=2[1-\Phi(2.32)]=.0204
$$

7. Conclusion: Using a significance level of $.01, H_{0}$ would not be rejected since $.0204>.01$. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

P-values for z-tests

$$
P \text {-value: } \quad P= \begin{cases}1-\Phi(z) & \text { for an upper-tailed test } \\ \Phi(z) & \text { for a lower-tailed test } \\ 2[1-\Phi(|z|)] & \text { for a two-tailed test }\end{cases}
$$

P-values for t-tests

Figure $9.8 P$-values for t tests

Practice problem

Problem

Suppose we want to test

$$
\begin{aligned}
& H_{0}: \mu=25 \\
& H_{a}: \mu>25
\end{aligned}
$$

from a sample with $n=5$ and the calculated value

$$
t=\frac{\bar{x}-25}{s / \sqrt{n}}=1.02
$$

(a) What is the P-value of the test
(b) Should we reject the null hypothesis?

Table A. 7 t Curve Tail Areas

						6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	. 50	. 500	. 50	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 50	. 50	. 500	. 500	00
0.1	. 468	. 465	. 463	. 463	. 462.	. 462	. 462	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 46	. 461	. 461
0.2	. 437	. 430	. 427	. 426	. 425	. 424	. 424	. 423	. 423	. 423	. 423	. 422	. 422	. 422	. 422	. 422	. 422	. 422
0.3	. 407	. 396	. 39	. 390	. 388	. 38	. 386	. 38	. 386	. 385	. 38	. 385	. 384	. 38	. 38	384	. 384	. 384
0.4	. 379	. 364	. 358	. 355	. 353	. 352	. 351	. 350	. 349	. 349	. 348	. 348	. 348	. 347	. 347	. 347	. 347	. 347
0.5	. 352	. 333	. 326	. 322	. 319	. 317	. 316	. 315	. 315	. 314	. 313	. 313	. 313	. 312	. 312	. 312	. 312	. 312
	. 328	. 305	. 295	. 290	. 287	. 285	. 284	. 283	. 282	. 281	. 280	. 280	. 279	. 279	. 279	. 27	278	278
0.7	. 30	. 278	. 267	. 261	. 258	. 255	. 253	. 252	. 251	. 250	. 249	. 249	. 248	. 247	. 247	. 247	. 247	. 24
0.8	. 285	. 254	. 241	34	30	27	. 225	22	. 222	. 221	. 220	. 220	. 219	. 218	. 218	. 21	. 21	217
0.9	. 267	. 232	. 217	. 210	. 205	. 201	. 199	. 197	. 196	. 195	. 194	. 193	. 192	. 191	. 191	. 191	. 190	190
1.0	. 250	. 211	. 196	. 187	. 182	. 178	. 175	. 173	. 172	. 170	. 169	. 169	. 168	. 167	. 167	. 16	. 166	16
	. 235	. 193	. 176	. 167	. 162	. 157	. 154	. 152	. 150	. 149	. 147	. 146	. 146	. 144	. 144	. 144	. 143	. 143
1.2	. 22	. 177	. 158	. 148	. 142	. 138	. 135	. 132	. 130	. 129	. 128	. 127	. 126	. 124	. 12	. 12	. 123	23
1.3	. 209	. 162	. 142	. 132	. 125	. 121	. 117	. 115	. 113	. 111	. 110	. 109	. 108	. 107	. 107	. 106	. 105	. 105
1.4	. 197	. 148	. 128	. 117	. 110	. 106	. 102	. 100	. 098	. 096	. 095	. 093	. 092	. 091	. 091	. 090	. 090	89
1.5	187	. 136	. 11	. 10	. 097	. 092	. 089	. 086	. 08	. 082	. 081	. 080	. 079	. 077	. 077	. 07	. 076	. 075

Interpreting P-values

A P-value:

- is not the probability that H_{0} is true
- is not the probability of rejecting H_{0}
- is the probability, calculated assuming that H_{0} is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Example 1

Let μ denote the mean reaction time to a certain stimulus. For a large-sample z test of $H_{0}: \mu=5$ versus $H_{\mathrm{a}}: \mu>5$, nd the P-value associated with each of the given values of the z test statistic.
a. 1.42
b. 90
c. 1.96
d. 2.48
e. -.11

Example 2

On the label, Pepperidge Farm bagels are said to weigh four ounces each (113 grams). A random sample of six bagels resulted in the following weights (in grams):
$\begin{array}{llllll}117.6 & 109.5 & 111.6 & 109.2 & 119.1 & 110.8\end{array}$
a. Based on this sample, is there any reason to doubt that the population mean is at least 113 grams?

