Mathematical statistics

May 3rd, 2019

Lecture 28: Inferences based on two samples

Overview

Week 1 · · · · ·	Probability reviews
Week 2 ·····•	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9, 10: Test of Hypothesis
Week 14 · · · · ·	Regression

Inferences based on two samples

- 10.1 Difference between two population means
 - z-test
 - confidence intervals
- 10.2 The two-sample t test and confidence interval
- 10.3 Analysis of paired data

Chapter 9: Hypothesis testing (with one sample)

Hypothesis testing for one parameter

- Identify the parameter of interest
- Determine the null value and state the null hypothesis
- State the appropriate alternative hypothesis
- Give the formula for the test statistic
- lacktriangle State the rejection region for the selected significance level lpha
- Ompute statistic value from data
- Decide whether H_0 should be rejected and state this conclusion in the problem context

Sample solution

- \bullet Parameter of interest: $\mu = {\rm true}$ average activation temperature
- Hypotheses

$$H_0: \mu = 130$$

 $H_a: \mu \neq 130$

• Test statistic:

$$z = \frac{\bar{x} - 130}{1.5/\sqrt{n}}$$

- Rejection region: either $z \le -z_{0.005}$ or $z \ge z_{0.005} = 2.58$
- Substituting $\bar{x} = 131.08$, $n = 25 \rightarrow z = 2.16$.
- Note that -2.58 < 2.16 < 2.58. We fail to reject H_0 at significance level 0.01.
- The data does not give strong support to the claim that the true average differs from the design value.

Test about a population mean

Null hypothesis

$$H_0: \mu = \mu_0$$

- The alternative hypothesis will be either:
 - $H_a: \mu > \mu_0$
 - $H_a: \mu < \mu_0$
 - $H_a: \mu \neq \mu_0$
- Three settings
 - ullet normal population with known σ
 - large-sample tests
 - ullet a normal population with unknown σ

Normal population with known σ

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

. .

Alternative Hypothesis

$$H_{\rm a}$$
: $\mu > \mu_0$
 $H_{\rm a}$: $\mu < \mu_0$

$$H_a$$
: $\mu \neq \mu_0$

Rejection Region for Level α Test

$$z \ge z_{\alpha}$$
 (upper-tailed test)
 $z \le -z_{\alpha}$ (lower-tailed test)
either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)

Large-sample tests

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

Alternative Hypothesis

Rejection Region for Level α Test

$$\begin{array}{ll} H_{\rm a}\!\!: \mu > \mu_0 & z \geq z_\alpha \text{ (upper-tailed test)} \\ H_{\rm a}\!\!: \mu < \mu_0 & z \leq -z_\alpha \text{ (lower-tailed test)} \\ H_{\rm a}\!\!: \mu \neq \mu_0 & \text{either } z \geq z_{\alpha/2} \text{ or } z \leq -z_{\alpha/2} \text{ (two-tailed test)} \end{array}$$

[Does not need the normal assumption]

t-test

Null hypothesis:
$$H_0$$
: $\mu = \mu_0$
Test statistic value: $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

Alternative Hypothesis

Rejection Region for a Level α Test

$$H_a$$
: $\mu > \mu_0$ $t \ge t_{\alpha,n-1}$ (upper-tailed)
 H_a : $\mu < \mu_0$ $t \le -t_{\alpha,n-1}$ (lower-tailed)
 H_a : $\mu \ne \mu_0$ either $t \ge t_{\alpha/2,n-1}$ or $t \le -t_{\alpha/2,n-1}$ (two-tailed)

[Require normal assumption]

P-value

DEFINITION

The **P-value** (or observed significance level) is the smallest level of significance at which H_0 would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

- 1. P-value $\leq \alpha \Rightarrow$ reject H_0 at level α .
- **2.** P-value $> \alpha \Rightarrow$ do not reject H_0 at level α .

Testing by P-value method

DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level α (as before, the desired type I error probability). Then reject H_0 if P-value $\leq \alpha$; do not reject H_0 if P-value $> \alpha$

Remark: the smaller the P-value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

Example

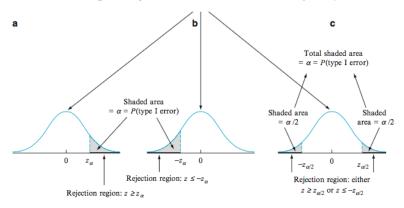
Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is 245 μ m. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of 246.18 μ m and a sample standard deviation of 3.60 μ m.

Does this data suggest that true average wafer thickness is something other than the target value?

P-values for z-tests

z curve (probability distribution of test statistic Z when H_0 is true)



P-values for z-tests

- 1. Parameter of interest: μ = true average wafer thickness
- **2.** Null hypothesis: H_0 : $\mu = 245$
- 3. Alternative hypothesis: H_a : $\mu \neq 245$
- **4.** Formula for test statistic value: $z = \frac{\bar{x} 245}{s/\sqrt{n}}$
- 5. Calculation of test statistic value: $z = \frac{246.18 245}{3.60/\sqrt{50}} = 2.32$
- 6. Determination of P-value: Because the test is two-tailed,

$$P$$
-value = $2[1 - \Phi(2.32)] = .0204$

7. Conclusion: Using a significance level of .01, H₀ would not be rejected since .0204 > .01. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

P-values for *t*-tests

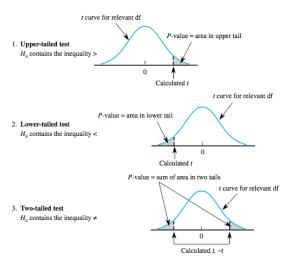


Figure 9.8 P-values for t tests

Practice problem

Problem

Suppose we want to test

$$H_0: \mu = 25$$

$$H_{\rm a}$$
 : $\mu > 25$

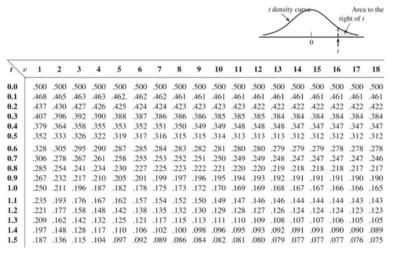
from a sample with n = 5 and the calculated value

$$t = \frac{\bar{x} - 25}{s/\sqrt{n}} = 1.02$$

- (a) What is the P-value of the test
- (b) Should we reject the null hypothesis?

t-table

Table A.7 t Curve Tail Areas



Interpreting P-values

A P-value:

- is not the probability that H_0 is true
- is not the probability of rejecting H_0
- is the probability, calculated assuming that H_0 is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Two-sample inference

Two-sample inference: example

Example

Let μ_1 and μ_2 denote true average decrease in cholesterol for two drugs. From two independent samples X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n , we want to test:

$$H_0: \mu_1 = \mu_2$$

$$H_a: \mu_1 \neq \mu_2$$

Settings

• This lecture: independent samples

Assumption

- **1** X_1, X_2, \dots, X_m is a random sample from a population with mean μ_1 and variance σ_1^2 .
- ② $Y_1, Y_2, ..., Y_n$ is a random sample from a population with mean μ_2 and variance σ_2^2 .
- The X and Y samples are independent of each other.
 - Next lecture: paired-sample test

Review Chapter 6 and Chapter 7

Problem

Assume that

- $X_1, X_2, ..., X_m$ is a random sample from a population with mean μ_1 and variance σ_1^2 .
- $Y_1, Y_2, ..., Y_n$ is a random sample from a population with mean μ_2 and variance σ_2^2 .
- The X and Y samples are independent of each other.

Compute (in terms of $\mu_1, \mu_2, \sigma_1, \sigma_2, m, n$)

- (a) $E[\bar{X} \bar{Y}]$
- (b) $Var[\bar{X} \bar{Y}]$ and $\sigma_{\bar{X} \bar{Y}}$

Properties of $\bar{X} - \bar{Y}$

Proposition

The expected value of $\overline{X} - \overline{Y}$ is $\mu_1 - \mu_2$, so $\overline{X} - \overline{Y}$ is an unbiased estimator of $\mu_1 - \mu_2$. The standard deviation of $\overline{X} - \overline{Y}$ is

$$\sigma_{\overline{X}-\overline{Y}} = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$

Normal distributions with known variances

Chapter 8: Confidence intervals

Assume further that the distributions of X and Y are normal and σ_1 , σ_2 are known:

Problem

(a) What is the distribution of

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$$

(b) Compute

$$P\left[-1.96 \le \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \le 1.96\right]$$

(c) Construct a 95% CI for $\mu_1 - \mu_2$ (in terms of \bar{x} , \bar{y} , m, n, σ_1 , σ_2).

Confidence intervals

When both population distributions are normal, standardizing $\overline{X} - \overline{Y}$ gives a random variable Z with a standard normal distribution. Since the area under the z curve between $-z_{\alpha/2}$ and $z_{\alpha/2}$ is $1 - \alpha$, it follows that

$$P\left(-z_{\alpha/2} < \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} < z_{\alpha/2}\right) = 1 - \alpha$$

Manipulation of the inequalities inside the parentheses to isolate $\mu_1 - \mu_2$ yields the equivalent probability statement

$$P\left(\overline{X} - \overline{Y} - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}\right) = 1 - \alpha$$

Testing the difference between two population means

- Setting: independent normal random samples X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n with known values of σ_1 and σ_2 . Constant Δ_0 .
- Null hypothesis:

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

- Alternative hypothesis:
 - (a) $H_a: \mu_1 \mu_2 > \Delta_0$
 - (b) $H_a: \mu_1 \mu_2 < \Delta_0$
 - (c) $H_a: \mu_1 \mu_2 \neq \Delta_0$
- When $\Delta = 0$, the test (c) becomes

$$H_0: \mu_1 = \mu_2$$

$$H_a: \mu_1 \neq \mu_2$$

Testing the difference between two population means

Problem

Assume that we want to test the null hypothesis $H_0: \mu_1 - \mu_2 = \Delta_0$ against each of the following alternative hypothesis

- (a) $H_a: \mu_1 \mu_2 > \Delta_0$
- (b) $H_a: \mu_1 \mu_2 < \Delta_0$
- (c) $H_a: \mu_1 \mu_2 \neq \Delta_0$

by using the test statistic:

$$z = \frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}.$$

What is the rejection region in each case (a), (b) and (c)?

Testing the difference between two population means

Proposition

Null hypothesis:
$$H_0$$
: $\mu_1 - \mu_2 = \Delta_0$
Test statistic value: $z = \frac{\overline{x} - \overline{y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{a}}}$

Alternative Hypothesis

$$H_a$$
: $\mu_1 - \mu_2 > \Delta_0$

$$H_a$$
: $\mu_1 - \mu_2 < \Delta_0$

$$H_a$$
: $\mu_1 - \mu_2 \neq \Delta_0$

Rejection Region for Level a Test

$$z \ge z_{\alpha}$$
 (upper-tailed test)

$$z \le -z_{\alpha}$$
 (lower-tailed test)

either
$$z \ge z_{\alpha/2}$$
 or $z \le -z_{\alpha/2}$ (two-tailed test)

Practice problem

Each student in a class of 21 responded to a questionnaire that requested their GPA and the number of hours each week that they studied. For those who studied less than 10 h/week the GPAs were

$$2.80, 3.40, 4.00, 3.60, 2.00, 3.00, 3.47, 2.80, 2.60, 2.00$$

and for those who studied at least 10 h/week the GPAs were

$$3.00, 3.00, 2.20, 2.40, 4.00, 2.96, 3.41, 3.27, 3.80, 3.10, 2.50$$

Assume that the distribution of GPA for each group is normal and both distributions have standard deviation $\sigma_1 = \sigma_2 = 0.6$. Treating the two samples as random, is there evidence that true average GPA differs for the two study times? Carry out a test of significance at level .05.

Solution

- The parameter of interest is μ₁ − μ₂, the difference between true mean GPA for the < 10 (conceptual) population and true mean GPA for the ≥10 population.
- 2. The null hypothesis is H_0 : $\mu_1 \mu_2 = 0$.
- 3. The alternative hypothesis is H_a: μ₁ − μ₂ ≠ 0; if H_a is true then μ₁ and μ₂ are different. Although it would seem unlikely that μ₁ − μ₂ > 0 (those with low study hours have higher mean GPA) we will allow it as a possibility and do a two-tailed test.
- 4. With $\Delta_0 = 0$, the test statistic value is

$$z = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$$

5. The inequality in H_a implies that the test is two-tailed. For $\alpha = .05$, $\alpha/2 = .025$ and $z_{\alpha/2} = z_{.025} = 1.96$. H_0 will be rejected if $z \ge 1.96$ or $z \le -1.96$.

Solution

6. Substituting m=10, $\bar{x}=2.97$, $\sigma_1^2=.36$, n=11, $\bar{y}=3.06$, and $\sigma_2^2=.36$ into the formula for z yields

$$z = \frac{2.97 - 3.06}{\sqrt{\frac{.36}{10} + \frac{.36}{11}}} = \frac{-.09}{.262} = -.34$$

That is, the value of $\bar{x} - \bar{y}$ is only one-third of a standard deviation below what would be expected when H_0 is true.

7. Because the value of z is not even close to the rejection region, there is no reason to reject the null hypothesis. This test shows no evidence of any relationship between study hours and GPA.

Large-sample tests/confidence intervals

Principles

• Central Limit Theorem: \bar{X} and \bar{Y} are approximately normal when $n>30 \to \text{so}$ is $\bar{X}-\bar{Y}$. Thus

$$\frac{\left(\bar{X}-\bar{Y}\right)-\left(\mu_1-\mu_2\right)}{\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}}$$

is approximately standard normal

- When *n* is sufficiently large $S_1 \approx \sigma_1$ and $S_2 \approx \sigma_2$
- Conclusion:

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$$

is approximately standard normal when n is sufficiently large

If m, n > 40, we can ignore the normal assumption and replace σ by S

Large-sample tests

Proposition

Use of the test statistic value

$$z = \frac{\overline{x} - \overline{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

along with the previously stated upper-, lower-, and two-tailed rejection regions based on z critical values gives large-sample tests whose significance levels are approximately α . These tests are usually appropriate if both m>40 and n>40. A P-value is computed exactly as it was for our earlier z tests.

Large-sample Cls

Proposition

Provided that m and n are both large, a CI for $\mu_1 - \mu_2$ with a confidence level of approximately $100(1-\alpha)\%$ is

$$\bar{x}-\bar{y} \pm z_{\alpha/2}\sqrt{\frac{s_1^2}{m}+\frac{s_2^2}{n}}$$

where -gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be calculated by retaining the appropriate sign and replacing $z_{\alpha/2}$ by z_{α} .

Example

Example

Let μ_1 and μ_2 denote true average tread lives for two competing brands of size P205/65R15 radial tires.

(a) Test

$$H_0: \mu_1 = \mu_2$$

 $H_a: \mu_1 \neq \mu_2$

at level 0.05 using the following data: m = 45, $\bar{x} = 42,500$, $s_1 = 2200$, n = 45, $\bar{y} = 40,400$, and $s_2 = 1900$.

(b) Construct a 95% CI for $\mu_1 - \mu_2$.

