
MATH637, Spring 2019
Homework 2: MNIST

Due Friday, March 29th, 5:00pm

The MNIST database (Modified National Institute of Standards and Technology database) is one of the most
popular datasets in machine learning and data science. Everyone in the field works with MNIST, so we
should do that too.

The MNIST database contains 60,000 training images and 10,000

testing images of 28× 28 grayscale images of handwritten digits. Each
of the sample in the dataset can be regarded as a vector in R28×28, and
our task is to match the samples with their corresponding labels in
{0, 1, . . . , 9} using a machine learning algorithm.

Figure 1: Sample images from MNIST
test dataset.

At first, this seems to be a very high-dimensional and difficult
problem that cannot be solved easily, at least by the primitive tools
we’ve learnt in the class so far. However, the reality is that classifying
digits with MNIST is a problem so clean even simple algorithms
can easily achieve 90% prediction accuracy. One intuition is as
follows: although the dataset lives in a high-dimensional space, its
intrinsic geometric dimension is quite low. If we try to project
the dataset toward a two-dimensional plane (constructed by using
Principal Component Analysis, a tool that we will learn later in the
semester), we will have something like Figure 2. We can see that most
of the clusters are separated from each other, and one can imagine that
on a bit higher dimension we can solve the classification problem quite
easily. Another intuition: it is difficult to be confused between a zero
and a one or a seven, regardless of the resolution of the images, so at
least some parts of the problem should be straightforward.

The idea of this homework is to play around with the dataset and to
make some attempts at solving the classification problem using your
preferred algorithm.

Figure 2: Projection of MNIST on a
two-dimensional plane.

1. Read the dataset

There are many ways to download/import MNIST. One approach is
to use keras.datsets.mnist in the library tensorflow. The detailed codes
are as follows:

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(X_train, y_train),(X_test, y_test) = mnist.load_data()

The dataset is huge and training with Xtrain (60,000 samples) might
be slow. I suggest we take a random subset of size 5000 of the
training data



math637, spring 2019 2

import random

I=random.sample(range(60000), 5000)

X_train=X_train[I]

y_train=y_train[I]

and start with them first before running on the whole training set.

2. Pre-processing

It is worth noting that the algorithms implemented in sklearn only receive two dimensional arrays as input,
i.e., the input should be of dimension (n, d), where n is the number of training observations, and d is the
number of features. The loaded arrays X on the previous step are of dimension (6000, 28, 28) (you can
see that by looking at X_train.shape) because each observation is a 28× 28 grayscale image. We need to
change that.

Step 1: Create arrays xtrain, xtest of dimension (6000, 784) from Xtrain, Xtest using the function flatten.

The pixels of our image encode the light intensity with values in {0, 1, . . . , 255}. To make standard
algorithms more stable, a common practice is to normalize the vectors so that the variables only receive
values in [0, 1], or [-1, 1]. I recommend doing that here.

Step 2: Divide xtrain, xtest by 255 to scale the coordinates to [0, 1].

3. Classification

Now we have clean training set and test set. Use an algorithm of your choice to classify the images. If
you have no preference, try SVM with rbf kernel:

clf=SVC(kernel=’rbf’, gamma=0.01)

clf.fit(x_train, y_train)

s=clf.predict(x_test)

and use

clf.score(x_test, y_test)

to see the prediction accuracy.

If you want to visualize the results of the prediction, here are some optional sample codes

plt.figure(figsize=(10,10))

for i in range(25):

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

j=random.randint(0,10000)

plt.imshow(X_test[j], cmap=plt.cm.get_cmap("binary"))

plt.xlabel(s[j])

plt.show()



math637, spring 2019 3

4. Tunable parameters

Whichever method you used in the previous part comes with (at least) a tunable parameter (in the above
example, it is γ).

Task: Create an array of some sensible values for that parameter and use the prediction score on the
test set as a measure of accuracy to pick the optimal value. Provide a plot that visualizes the prediction
accuracy across the set of parameter values you chose.


