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Supervised learning problem
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Supervised learning: learning a function that maps an input to an
output based on example input-output pairs
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Supervised learning: standard setting

e Given: a sequence of label data (x1,y1), (x2,¥2), .-+, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

@ Goal: predict the label of a new instance x
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Supervised learning: standard setting

e Given: a sequence of label data (x1,y1), (x2,y2),- -, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

@ a learning algorithm seeks a function h: X — ), where X is
the input space and ) is the output space
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Supervised learning: standard setting

@ The function h is an element of some space of possible
functions H, usually called the hypothesis space

@ In order to measure how well a function fits the training data,
a loss function
L:YxY— RO

is defined
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Risk and empirical risk

@ With a pre-defined loss function, the “optimal hypothesis” is
the minimizer over H of the risk function

R(h) = Eix,v)~p[L(Y, h(X))]

@ Since P is unknown, the simplest approach is to approximate
the risk function by the empirical risk
1 n
Ra(h) = — > (v, ()
i=1
@ The empirical risk minimizer (ERM): minimizer of the
empirical risk function
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PAC learning

Definition
The probably approximately correct (PAC) learning model typically

states as follows: we say that h,, is e-accurate with probability
1-46if

P |R(hn) — jnf R(h) >¢| <.

~

In other words, we have R(hy,) — infpeyy R(h) < € with probability
at least (1 — 9).
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Exponential moment of bounded random variables

For any random variable X, ¢ > 0 and t > 0

P[X > ¢ < [tX]

If random variable X has mean zero and is bounded in [a, b, then

for any s > 0,
2(p _ -)2
E[eX] < exp <t(ba)>

8
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Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let X1, Xa,..., X, be i.i.d copy of a random variable X € [a, b],
and e > 0,

X1+ Xo+ ...+ X, 2ne?
P — E[X] > <2 .
" 9> <200 (-
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Generalization bound for finite hypothesis space and bounded

loss

Vu Dinh Mathematical techniques in data science



@ the loss function L is bounded, that is

ILy,y) <c Vy,y' ey
@ the hypothesis space is a finite set, that is

H={hy, ho, ..., hw}
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PAC estimate for ERM

Forany 6 >0 and e > 0, if

c? 2|H|
> - Zi e
nzs3 log < 5 )

then hy, is e-accurate with probability 1 — .
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