Mathematical techniques in data science

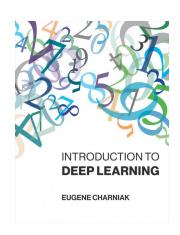
Vu Dinh

Lecture 4: Generalization bounds using covering number

February 22nd, 2019

Seminar series: Introduction to Deep Learning

- I and Prof. Guillot are thinking about running a seminar series on Deep Learning
- Meeting: once a week, 1 hour, starting in March



Supervised learning: standard setting

- Given: a sequence of label data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ sampled (independently and identically) from an unknown distribution $P_{X,Y}$
- a learning algorithm seeks a function $h: \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space

Supervised learning: standard setting

- The function h is an element of some space of possible functions \mathcal{H} , usually called the *hypothesis space*
- In order to measure how well a function fits the training data,
 a loss function

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

Risk and empirical risk

ullet With a pre-defined loss function, the "optimal hypothesis" is the minimizer over ${\cal H}$ of the risk function

$$R(h) = E_{(X,Y)\sim P}[L(Y,h(X))]$$

 Since P is unknown, the simplest approach is to approximate the risk function by the empirical risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(y_i, h(x_i))$$

- The empirical risk minimizer (ERM): minimizer of the empirical risk function (in this lecture, denoted by \hat{h}_n)
- Let h* denotes a minimizer of the risk function

PAC learning

Definition

The probably approximately correct (PAC) learning model typically states as follows: we say that \hat{h}_n is ϵ -accurate with probability $1-\delta$ if

$$P\left[R(\hat{h}_n)-R(h^*)>\epsilon\right]<\delta.$$

In other words, we have $R(\hat{h}_n) - R(h^*) \le \epsilon$ with probability at least $(1 - \delta)$.

Exponential moment of bounded random variables

Theorem

For any random variable X, $\epsilon > 0$ and t > 0

$$P[X \ge \epsilon] \le \frac{\mathbb{E}[e^{tX}]}{e^{t\epsilon}}.$$

Theorem

If random variable X has mean zero and is bounded in [a,b], then for any s>0,

$$\mathbb{E}[e^{tX}] \le \exp\left(\frac{t^2(b-a)^2}{8}\right)$$

Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let $X_1, X_2, ..., X_n$ be i.i.d copy of a random variable $X \in [a, b]$, and $\epsilon > 0$,

$$P\left[\frac{X_1+X_2+\ldots+X_n}{n}-E[X]\geq\epsilon\right]\leq\exp\left(-\frac{n\epsilon^2}{2(b-a)^2}\right).$$

Corollary:

$$P\left[\left|\frac{X_1+X_2+\ldots+X_n}{n}-E[X]\right|\geq\epsilon\right]\leq 2\exp\left(-\frac{n\epsilon^2}{2(b-a)^2}\right).$$

Generalization bound for finite hypothesis space and bounded loss

Assumption

• the loss function L is bounded, that is

$$0 \le L(y, y') \le c \quad \forall y, y' \in \mathcal{Y}$$

• the hypothesis space is a finite set, that is

$$\mathcal{H} = \{h_1, h_2, \ldots, h_m\}.$$

Key ideas

• For any $h \in \mathcal{H}$ and $\epsilon > 0$ we have

$$P[|R_n(h) - R(h)| \ge \epsilon] \le 2 \exp\left(-\frac{n\epsilon^2}{2c^2}\right).$$

 Using a union bound on the "failure probability" associated with each hypothesis, we have

$$P[\exists h \in \mathcal{H} : |R_n(h) - R(h)| \ge \epsilon] \le 2|\mathcal{H}| \exp\left(-\frac{n\epsilon^2}{2c^2}\right).$$

Key ideas

 Using a union bound on the "failure probability" associated with each hypothesis, we have

$$P[\forall h \in \mathcal{H} : |R_n(h) - R(h)| < \epsilon]$$

 $\geq 1 - 2|\mathcal{H}| \exp\left(-\frac{n\epsilon^2}{2c^2}\right).$

Under this "good event":

$$R(\hat{h}_n) - R(h^*)$$

= $[R(\hat{h}_n) - R_n(\hat{h}_n)] + [R_n(\hat{h}_n) - R_n(h^*)] + [R_n(h^*) - R(h^*)]$
 $\leq 2\epsilon$

• Conclusion: \hat{h}_n is (2 ϵ)-accurate with probability $1-\delta$, where

$$\delta = 2|\mathcal{H}|\exp\left(-\frac{n\epsilon^2}{2c^2}\right)$$

PAC estimate for ERM

Theorem

For any $\delta > 0$ and $\epsilon > 0$, if

$$n \ge \frac{8c^2}{\epsilon^2} \log \left(\frac{2|\mathcal{H}|}{\delta} \right)$$

then \hat{h}_n is ϵ -accurate with probability at least $1 - \delta$.

PAC estimate for ERM

$$n = \frac{8c^2}{\epsilon^2} \log \left(\frac{2|\mathcal{H}|}{\delta} \right)$$

• Fix a level of confidence δ , the accuracy ϵ of the ERM is

$$\mathcal{O}\left(\frac{1}{\sqrt{n}}\sqrt{\log\left(\frac{1}{\delta}\right) + \log(|\mathcal{H}|)}\right)$$

• If we want $\epsilon \to 0$ as $n \to \infty$:

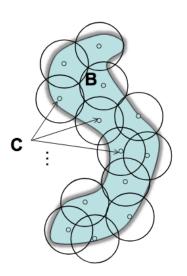
$$\log(|\mathcal{H}|) \ll n$$

• The convergence rate will not be better than $\mathcal{O}(n^{-1/2})$

Generalization bound using covering number.

Covering numbers

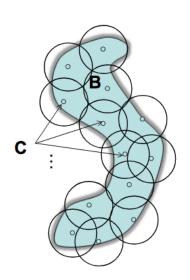
- Assumption: H is a metric space with distance d defined on it.
- For $\epsilon > 0$, we denote by $\mathcal{N}(\epsilon, \mathcal{H}, d)$ the covering number of (\mathcal{H}, d) ; that is, $\mathcal{N}(\epsilon, \mathcal{H}, d)$ is the minimal number of balls of radius ϵ needed to cover \mathcal{H} .



Covering numbers

Remark: If \mathcal{H} is a bounded k—dimensional manifold/algebraic surface, then we now that

$$\mathcal{N}(\epsilon,\mathcal{H},d) = \mathcal{O}\left(\epsilon^{-k}\right)$$



Generalization bound using covering number.

- Assumption: \mathcal{H} is a metric space with distance d defined on it.
- For $\epsilon > 0$, we denote by $\mathcal{N}(\epsilon, \mathcal{H}, d)$ the *covering number* of (\mathcal{H}, d) ; that is, $\mathcal{N}(\epsilon, \mathcal{H}, d)$ is the minimal number of balls of radius ϵ needed to cover \mathcal{H} .
- Assumption: loss function L satisfies:

$$|L(h(x), y) - L(h'(x), y)| \le Cd(h, h') \ \forall, x \in \mathcal{X}; y \in \mathcal{Y}; h, h' \in \mathcal{H}$$

Key ideas

If

$$n = \frac{8c^2}{\epsilon^2} \log \left(\frac{2|\mathcal{H}_{\epsilon}|}{\delta} \right)$$

then the event

$$|R_n(h) - R(h)| \le \epsilon, \forall h \in \mathcal{H}_{\epsilon}$$

happens with probability at least $1 - \delta$.

• Under this event, consider any $h \in \mathcal{H}$, then there exists $h_0 \in \mathcal{H}_{\epsilon}$ such that $d(h, h_0) \leq \epsilon$.

Key ideas

• Since the loss function is Lipschitz

$$|R_n(h) - R_n(h_0)| \le Cd(h, h_0)$$

and

$$|R(h)-R(h_0)|\leq Cd(h,h_0).$$

Conclusion:

$$|R_n(h) - R(h)| \le (2C+1)\epsilon \quad \forall h \in \mathcal{H}.$$

Generalization bound using covering number.

$\mathsf{Theorem}$

For all $\epsilon > 0$, $\delta > 0$, if

$$n \ge \frac{c^2}{2\epsilon^2} \log \left(\frac{2\mathcal{N}(\epsilon, \mathcal{H}, d)}{\delta} \right)$$

then

$$|R_n(h) - R(h)| \le (2C+1)\epsilon \quad \forall h \in \mathcal{H}.$$

with probability at least $1 - \delta$.

Example: Polynomial covering number.

Assume that

$$\mathcal{N}(\epsilon, \mathcal{H}, d) \leq K\epsilon^{-k}$$

for some K > 0 and $k \ge 1$.

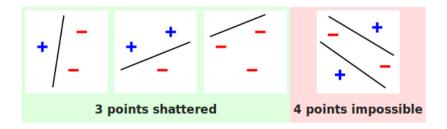
• \hat{h}_n is ϵ -accurate with probability at least $1-\delta$ if

$$n = \frac{c^2(4C+2)^2}{2\epsilon^2} \left(\log \left(\frac{2K}{\delta} \right) + k \log \left(\frac{4C+2}{\epsilon} \right) \right)$$

• Homework: Fix n and δ , derive an upper bound for ϵ .

Other measures of learning dimension

Vapnik-Chervonenkis dimension



The set of straight lines (as a binary classification model on points) in a two-dimensional plane has VC dimension 3.

Rademacher complexity

- measures richness of a class of real-valued functions with respect to a probability distribution
- Given a sample $S = (x_1, x_2, \dots, x_n)$ and a class \mathcal{H} of real-valued functions defined on the input space \mathcal{X} , the empirical Rademacher complexity of \mathcal{H} given S is defined as:

$$Rad(\mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(x_{i}) \right]$$

where $\sigma_1, \sigma_2, \dots, \sigma_m$ are independent random variables drawn from the Rademacher distribution

$$P[\sigma_i = 1] = P[\sigma_i = -1] = 1/2$$

