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Seminar series: Introduction to Deep Learning

@ | and Prof. Guillot are thinking
about running a seminar series
on Deep Learning

@ Meeting: once a week, 1 hour,
starting in March INTRODUCTION TO
DEEP LEARNING

EUGENE CHARNIAK
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Supervised learning: standard setting

e Given: a sequence of label data (x1,y1), (x2,y2),- -, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

@ a learning algorithm seeks a function h: X — ), where X is
the input space and ) is the output space
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Supervised learning: standard setting

@ The function h is an element of some space of possible
functions H, usually called the hypothesis space

@ In order to measure how well a function fits the training data,
a loss function
L:YxY— RO

is defined
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Risk and empirical risk

@ With a pre-defined loss function, the “optimal hypothesis” is
the minimizer over H of the risk function

R(h) = Eix,v)~p[L(Y, h(X))]

@ Since P is unknown, the simplest approach is to approximate
the risk function by the empirical risk

Ra(h) =~ 3" Ly, h(x)
i=1

@ The empirical risk minimizer (ERM): minimizer of the
empirical risk function (in this lecture, denoted by h),)

@ Let A* denotes a minimizer of the risk function
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PAC learning

Definition

The probably approximately correct (PAC) learning model typically
states as follows: we say that h,, is e-accurate with probability
1—90if

P[R(ha) = R(H) > €] <.

In other words, we have R(h,) — R(h*) < e with probability at
least (1 — 9).
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Exponential moment of bounded random variables

For any random variable X, ¢ > 0 and t > 0

P[X > ¢ < [tX]

If random variable X has mean zero and is bounded in [a, b, then

for any s > 0,
2(p _ -)2
E[eX] < exp <t(ba)>

8
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Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let X1, Xz, ..., X, be i.i.d copy of a random variable X € |[a, b],

and e > 0,
X1+ Xo + ...+ X, ne?
— E[X] > €| < —— .
PR x> <o (-5 55)
Corollary:
X1+ Xo+ ...+ X, ne?
— >el <2 _— ).
al : | = o] <20 (35
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Generalization bound for finite hypothesis space and bounded

loss
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@ the loss function L is bounded, that is

0<L(y,y)<c Vy,y' el
@ the hypothesis space is a finite set, that is

H={hy, ho, ..., hw}
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@ For any h € H and € > 0 we have

PlIRA(K) — R(h)| > d < 2exp (—2) |

@ Using a union bound on the “failure probability” associated
with each hypothesis, we have

2
P[3h € H : [Ra(h) — R(h)| > €] < 2|H| exp (—'@) .
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@ Using a union bound on the “failure probability” associated
with each hypothesis, we have

P[Vh € H : |Ro(h) — R(h)| < €]

2
>1—2|H|exp <_nz> :

@ Under this “good event”:
R(hn) — R(h")

= [R(hn) = Ra(hn)] + [Rn(hn) — Ra(h*)] + [Ra(h*) — R(h¥)]
< 2¢

e Conclusion: h, is (2¢)-accurate with probability 1 — &, where
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PAC estimate for ERM

Forany 6 >0 and e > 0, if
8c? 2|H|
12 2 g (200

then hy, is e-accurate with probability at least 1 — 6.
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PAC estimate for ERM
8c 8 o 2|H|
(%)

o Fix a level of confidence §, the accuracy € of the ERM is

0 (%\/mg (3)+ Iog(\”»’ﬂ))

o If we want € — 0 as n — oo

log(H]) < n

@ The convergence rate will not be better than O(n~1/?)
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Generalization bound using covering number.
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Covering numbers

@ Assumption: H is a metric
space with distance d
defined on it.

@ For € > 0, we denote by
N (e, H,d) the covering
number of (H,d); that is,
N (e, H,d) is the minimal
number of balls of radius ¢
needed to cover H.
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Covering numbers

Remark: If H is a bounded
k—dimensional manifold/algebraic
surface, then we now that

N(e,H,d) = O <e_k)
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Generalization bound using covering number.

@ Assumption: H is a metric space with distance d defined on it.

@ For e > 0, we denote by N (e, M, d) the covering number of
(H,d); that is, N(e,H, d) is the minimal number of balls of
radius € needed to cover H.

@ Assumption: loss function L satisfies:

IL(h(x), y)~L(H(x), )| < Cd(h, ) ¥,x € Xiy € Vi h,H € H
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o If

then the event
|[R,(h) — R(h)| < ¢€,Yh € H,

happens with probability at least 1 — §.

@ Under this event, consider any h € H, then there exists
ho € H. such that d(h, hy) < e.
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@ Since the loss function is Lipschitz
|Rn(h) — Ra(ho)| < Cd(h, ho)

and
|R(h) — R(ho)| < Cd(h, ho).

@ Conclusion:

IRn(h) — R(h)| < (2C +1)e Vhe H.
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Generalization bound using covering number.

For alle >0, 6 >0, if

then
|Rn(h) — R(h)| < (2C+1)e VheH.

with probability at least 1 — .
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Example: Polynomial covering number.

@ Assume that

N(e,H,d) < Kek

for some K >0 and kK > 1.

~

@ h, is e-accurate with probability at least 1 — 0 if

c?(4C +2)2 2K 4C+2
n=-——-""|log (=) +klog
2¢2 ) €

@ Homework: Fix n and §, derive an upper bound for e.
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Other measures of learning dimension
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Vapnik—Chervonenkis dimension

3 points shattered 4 points impossible

The set of straight lines (as a binary classification model on
points) in a two-dimensional plane has VC dimension 3.
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Rademacher complexity

@ measures richness of a class of real-valued functions with
respect to a probability distribution

e Given a sample S = (x1,x2,...,x,) and a class H of
real-valued functions defined on the input space X, the
empirical Rademacher complexity of H given S is defined as:

1 m
Rad(H) = E, |sup — oif(x;
00~ [sp 2 S o)
where 01,092, ...,0, are independent random variables drawn

from the Rademacher distribution

Ploj =1] = Plo; =-1] =1/2
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