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Seminar series: Introduction to Deep Learning

I and Prof. Guillot are thinking
about running a seminar series
on Deep Learning

Meeting: once a week, 1 hour,
starting in March
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Supervised learning: standard setting

Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn)
sampled (independently and identically) from an unknown
distribution PX ,Y

a learning algorithm seeks a function h : X → Y, where X is
the input space and Y is the output space
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Supervised learning: standard setting

The function h is an element of some space of possible
functions H, usually called the hypothesis space

In order to measure how well a function fits the training data,
a loss function

L : Y × Y → R≥0

is defined
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Risk and empirical risk

With a pre-defined loss function, the “optimal hypothesis” is
the minimizer over H of the risk function

R(h) = E(X ,Y )∼P [L(Y , h(X ))]

Since P is unknown, the simplest approach is to approximate
the risk function by the empirical risk

Rn(h) =
1

n

n∑
i=1

L(yi , h(xi ))

The empirical risk minimizer (ERM): minimizer of the
empirical risk function (in this lecture, denoted by ĥn)

Let h∗ denotes a minimizer of the risk function
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PAC learning

Definition

The probably approximately correct (PAC) learning model typically
states as follows: we say that ĥn is ε-accurate with probability
1− δ if

P
[
R(ĥn)− R(h∗) > ε

]
< δ.

In other words, we have R(ĥn)− R(h∗) ≤ ε with probability at
least (1− δ).
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Exponential moment of bounded random variables

Theorem

For any random variable X , ε > 0 and t > 0

P[X ≥ ε] ≤ E[etX ]

etε
.

Theorem

If random variable X has mean zero and is bounded in [a, b], then
for any s > 0,

E[etX ] ≤ exp

(
t2(b − a)2

8

)
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Hoeffding’s inequality

Theorem (Hoeffding’s inequality)

Let X1,X2, . . . ,Xn be i.i.d copy of a random variable X ∈ [a, b],
and ε > 0,

P

[
X1 + X2 + . . .+ Xn

n
− E [X ] ≥ ε

]
≤ exp

(
− nε2

2(b − a)2

)
.

Corollary:

P

[∣∣∣∣X1 + X2 + . . .+ Xn

n
− E [X ]

∣∣∣∣ ≥ ε] ≤ 2 exp

(
− nε2

2(b − a)2

)
.
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Generalization bound for finite hypothesis space and bounded
loss
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Assumption

the loss function L is bounded, that is

0 ≤ L(y , y ′) ≤ c ∀y , y ′ ∈ Y

the hypothesis space is a finite set, that is

H = {h1, h2, . . . , hm}.
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Key ideas

For any h ∈ H and ε > 0 we have

P[|Rn(h)− R(h)| ≥ ε] ≤ 2 exp

(
−nε2

2c2

)
.

Using a union bound on the “failure probability” associated
with each hypothesis, we have

P[∃h ∈ H : |Rn(h)− R(h)| ≥ ε] ≤ 2|H| exp

(
−nε2

2c2

)
.
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Key ideas

Using a union bound on the “failure probability” associated
with each hypothesis, we have

P[∀h ∈ H : |Rn(h)− R(h)| < ε]

≥ 1− 2|H| exp

(
−nε2

2c2

)
.

Under this “good event”:

R(ĥn)− R(h∗)

= [R(ĥn)− Rn(ĥn)] + [Rn(ĥn)− Rn(h∗)] + [Rn(h∗)− R(h∗)]

≤ 2ε

Conclusion: ĥn is (2ε)-accurate with probability 1− δ, where

δ = 2|H| exp

(
−nε2

2c2

)
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PAC estimate for ERM

Theorem

For any δ > 0 and ε > 0, if

n ≥ 8c2

ε2
log

(
2|H|
δ

)
then ĥn is ε-accurate with probability at least 1− δ.
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PAC estimate for ERM

n =
8c2

ε2
log

(
2|H|
δ

)

Fix a level of confidence δ, the accuracy ε of the ERM is

O

(
1√
n

√
log

(
1

δ

)
+ log(|H|)

)

If we want ε→ 0 as n→∞:

log(|H|)� n

The convergence rate will not be better than O(n−1/2)
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Generalization bound using covering number.
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Covering numbers

Assumption: H is a metric
space with distance d
defined on it.

For ε > 0, we denote by
N (ε,H, d) the covering
number of (H, d); that is,
N (ε,H, d) is the minimal
number of balls of radius ε
needed to cover H.
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Covering numbers

Remark: If H is a bounded
k−dimensional manifold/algebraic
surface, then we now that

N (ε,H, d) = O
(
ε−k
)
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Generalization bound using covering number.

Assumption: H is a metric space with distance d defined on it.

For ε > 0, we denote by N (ε,H, d) the covering number of
(H, d); that is, N (ε,H, d) is the minimal number of balls of
radius ε needed to cover H.

Assumption: loss function L satisfies:

|L(h(x), y)−L(h′(x), y)| ≤ Cd(h, h′) ∀, x ∈ X ; y ∈ Y; h, h′ ∈ H
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Key ideas

If

n =
8c2

ε2
log

(
2|Hε|
δ

)
then the event

|Rn(h)− R(h)| ≤ ε, ∀h ∈ Hε

happens with probability at least 1− δ.

Under this event, consider any h ∈ H, then there exists
h0 ∈ Hε such that d(h, h0) ≤ ε.
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Key ideas

Since the loss function is Lipschitz

|Rn(h)− Rn(h0)| ≤ Cd(h, h0)

and
|R(h)− R(h0)| ≤ Cd(h, h0).

Conclusion:

|Rn(h)− R(h)| ≤ (2C + 1)ε ∀h ∈ H.
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Generalization bound using covering number.

Theorem

For all ε > 0, δ > 0, if

n ≥ c2

2ε2
log

(
2N (ε,H, d)

δ

)
then

|Rn(h)− R(h)| ≤ (2C + 1)ε ∀h ∈ H.

with probability at least 1− δ.
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Example: Polynomial covering number.

Assume that
N (ε,H, d) ≤ Kε−k

for some K > 0 and k ≥ 1.

ĥn is ε-accurate with probability at least 1− δ if

n =
c2(4C + 2)2

2ε2

(
log

(
2K

δ

)
+ k log

(
4C + 2

ε

))
Homework: Fix n and δ, derive an upper bound for ε.
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Other measures of learning dimension
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Vapnik–Chervonenkis dimension

The set of straight lines (as a binary classification model on
points) in a two-dimensional plane has VC dimension 3.

Vu Dinh Mathematical techniques in data science



Rademacher complexity

measures richness of a class of real-valued functions with
respect to a probability distribution

Given a sample S = (x1, x2, . . . , xn) and a class H of
real-valued functions defined on the input space X , the
empirical Rademacher complexity of H given S is defined as:

Rad(H) = Eσ

[
sup
f ∈H

1

m

m∑
i=1

σi f (xi )

]

where σ1, σ2, . . . , σm are independent random variables drawn
from the Rademacher distribution

P[σi = 1] = P[σi = −1] = 1/2
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