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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forrest
8
9 Neural network
10 Bootstrap and CV + Bayesian methods + UQ
11 Clustering: K-means → Spectral Clustering
12 PCA → Manifold learning
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Generalization bound for bounded loss
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Assumption

the loss function L is bounded, that is

0 ≤ L(y , y ′) ≤ c ∀y , y ′ ∈ Y

the hypothesis space is a finite set, that is

H = {h1, h2, . . . , hm}.
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PAC estimate for ERM

Theorem

For any δ > 0 and ε > 0, if

n ≥ 8c2

ε2
log

(
2|H|
δ

)
then ĥn is ε-accurate with probability at least 1− δ.
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PAC estimate for ERM

n =
8c2

ε2
log

(
2|H|
δ

)

Fix a level of confidence δ, the accuracy ε of the ERM is

O

(
1√
n

√
log

(
1

δ

)
+ log(|H|)

)

If we want ε→ 0 as n→∞:

log(|H|)� n

The convergence rate will not be better than O(n−1/2)
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Covering numbers

Remark: If H is a bounded
k−dimensional manifold/algebraic
surface, then we now that

N (ε,H, d) = O
(
ε−k
)
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Generalization bound using covering number.

Assumption: H is a metric space with distance d defined on it.

For ε > 0, we denote by N (ε,H, d) the covering number of
(H, d); that is, N (ε,H, d) is the minimal number of balls of
radius ε needed to cover H.

Assumption: loss function L satisfies:

|L(h(x), y)−L(h′(x), y)| ≤ Cd(h, h′) ∀, x ∈ X ; y ∈ Y; h, h′ ∈ H
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Generalization bound using covering number

Theorem

For all ε > 0, δ > 0, if

n ≥ c2

2ε2
log

(
2N (ε,H, d)

δ

)
then

|Rn(h)− R(h)| ≤ (2C + 1)ε ∀h ∈ H.

with probability at least 1− δ.
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Vapnik–Chervonenkis dimension

The set of straight lines (as a binary classification model on
points) in a two-dimensional plane has VC dimension 3.
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Rademacher complexity

measures richness of a class of real-valued functions with
respect to a probability distribution

Given a sample S = (x1, x2, . . . , xn) and a class H of
real-valued functions defined on the input space X , the
empirical Rademacher complexity of H given S is defined as:

Rad(H) = Eσ

[
sup
f ∈H

1

m

m∑
i=1

σi f (xi )

]

where σ1, σ2, . . . , σm are independent random variables drawn
from the Rademacher distribution

P[σi = 1] = P[σi = −1] = 1/2
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Remarks

If we want ε→ 0 as n→∞:

dimension(H)� n

How do we get that?

Model selection

Feature selection

Regularization:

Work for the case dimension(H)� n
Stabilize an estimator → force it to live in a neighborhood of a
lower-dimensional surface
Requires a stability bound instead of a uniform generalization
bound
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Classification: Logistic regression
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Supervised learning

Learning a function h : X → Y that maps an input to an output
based on example input-output pairs
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Classification: Predicting categorical/discrete outputs

Classify hand-written characters

Vu Dinh Mathematical techniques in data science



Classification: Predicting categorical/discrete outputs

Classify images of clothing
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Classification

Logistic regression

Linear Discriminant Analysis

Support Vector Machines

Nearest neighbours
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Logistic regression

Suppose we work with binary outputs Y = {0, 1}, and X is a
subset of Rd

Note: Data are withdrawn from a joint distribution PX ,Y →
even if we fix X , the label Y might be different from times to
times

Goal: Given input X , we want to model the probability that
Y = 1

P[Y = 1|X = x ]

This is a function of x , with values in [0, 1]
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Logistic function and logit function

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p
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Logistic regression: Assumptions

Assumption

Given X = x , Y is a Bernoulli random variable with parameter
p(x) = P[Y = 1|X = x ] and

logit(p(x)) = log
p(x)

1− p(x)
= log

P[Y = 1|X = x ]

P[Y = 0|X = x ]
= xTβ

for some vector β ∈ Rd+1.

Note: Here we denote

xTβ = β0 + β1x1 + . . .+ βdxd
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Generalized linear models (GLM)

A GLM consists of

A probability distribution for Y |X = x

A linear predictor η = xTβ

An activation function g such that g(E [Y |X = x ]) = η

Vu Dinh Mathematical techniques in data science



Logistic regression: Assumptions

Assumption

Given X = x , Y is a Bernoulli random variable with parameter
p(x) = P[Y = 1|X = x ] and

logit(p(x)) = log
p(x)

1− p(x)
= log

P[Y = 1|X = x ]

P[Y = 0|X = x ]
= xTβ

for some vector β ∈ Rd+1.

Implicit agreement: Real data are generated from this model with
a “true” parameter β∗. Our task is to find this β∗.

Vu Dinh Mathematical techniques in data science



Parameter estimation: maximum likelihood

Remember that for Bernoulli r.v. with parameter p

P[Y = y ] = py (1− p)1−y , y ∈ {0, 1}

Given samples (x1, y1), (x2, y2), . . . , (xn, yn), we have

L(β) =
n∏

i=1

p(xi , β)yi (1− p(xi , β))1−yi

Maximum likelihood (ML): maximize this likelihood function
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Parameter estimation: maximum likelihood

The log-likelihood can be computed as

`(β) = log L(β)

=
n∑

i=1

[yi log p(xi , β) + (1− yi ) log(1− p(xi , β))]

=
n∑

i=1

[
yix

T
i β − yi log(1 + ex

T
i β)− (1− yi ) log(1 + ex

Tβ)
]

=
n∑

i=1

[
yix

T
i β − log(1 + ex

T
i β)
]
.
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In the language of statistical learning

The hypothesis space: the set of all possible values for β
(including the true parameter β∗)

The loss function

lossβ(x , y) = −yxTβ + log(1 + ex
Tβ)

It can be proved that the risk function

R(β) = E [lossβ(x , y)]

has a unique minimizer at β∗
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Logistic regression: estimating the parameter

We want to maximize

`(β) =
n∑

i=1

[
yix

T
i β − log(1 + ex

T
i β)
]
.

Derivative with respect to the parameter

∂`

∂βj
(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.
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Logistic regression: estimating the parameter

The optimization needs to be performed by a numerical
optimization method

Penalties can be added to regularize the problem to avoid
overfitting

min
β
−`(β) + α‖β‖1

or
min
β
−`(β) + α‖β‖2

Vu Dinh Mathematical techniques in data science



Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values

We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x ] = pk(x),
K∑

k=1

pk(x) = 1.

Model

pk(x) =
ex

Tβ(k)∑K
k=1 e

xTβ(k)
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One versus one

Train a classifier for each possible pair of classes

Classify a new points according to a majority vote: count the
number of times the new point is assign to a given class, and
pick the class with the largest number
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One versus all

Fit the model to separate each class against the remaining
classes → obtain

pk(x) =
ex

Tβ(k)

1 + exTβ
(k)

Choose the label k that maximize pk(x)
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