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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural network
10 Bootstrap and CV + Bayesian methods + UQ
11 Clustering: K-means → Spectral Clustering
12 PCA → Manifold learning
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Classification

Logistic regression

Linear Discriminant Analysis

Support Vector Machines

Nearest neighbours
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Classification: Logistic regression
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Logistic regression

Suppose we work with binary outputs Y = {0, 1}, and X is a
subset of Rd

Goal: Given input X , we want to model the probability that
Y = 1

P[Y = 1|X = x ]
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Logistic function and logit function

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p
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Logistic regression: Assumptions

Assumption

Given X = x, Y is a Bernoulli random variable with parameter
p(x) = P[Y = 1|X = x ] and

logit(p(x)) = log
p(x)

1− p(x)
= log

P[Y = 1|X = x ]

P[Y = 0|X = x ]
= xTβ

for some vector β ∈ Rd+1.

Note: Here we denote

xTβ = β0 + β1x1 + . . .+ βdxd
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Logistic regression: Assumptions
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Parameter estimation: maximum likelihood

Remember that for Bernoulli r.v. with parameter p

P[Y = y ] = py (1− p)1−y , y ∈ {0, 1}

Given samples (x1, y1), (x2, y2), . . . , (xn, yn), we have

L(β) =
n∏

i=1

p(xi , β)yi (1− p(xi , β))1−yi

Maximum likelihood (ML): maximize this likelihood function
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Logistic regression: estimating the parameters

The optimization needs to be performed by a numerical
optimization method

Penalties can be added to regularize the problem to avoid
overfitting

min
β
−`(β) + α‖β‖1

or
min
β
−`(β) + α‖β‖2
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values

We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x ] = pk(x),
K∑

k=1

pk(x) = 1.

Model

pk(x) =
ex

Tβ(k)∑K
k=1 e

xTβ(k)
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Logistic regression: Assumptions
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Feed-forward neural network
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Classification: Linear discriminant analysis
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Classification

Suppose we work with outputs Y = {1, 2, . . . ,K}, and X is a
subset of Rd

Goal: Given input X , we want to model the probability that Y
condition on X

P[Y = i |X = x ], i ∈ Y

But some time, P[X = x |Y = i ] is easier to model!
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Bayes’ formula
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Bayes’ formula

P(A|B) =
P(B|A)P(A)

P(B)
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Linear discriminant analysis

Suppose

Y ∈ {1, 2, . . . ,K}
P(Y = i) = πi , i = 1, 2, . . . ,K .

P(X = x |Y = i) ∼ fi (x)

Then

P(Y = i |X = x) =
P(X = x |Y = i)P(Y = i)∑K
j=1 P(X = x |Y = j)P(Y = j)

=
fi (x)πi∑K
j=1 fj(x)πj
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Model P(X = x |Y = i) using Gaussian distributions

The natural model for fi (x) is the multivariate Gaussian
distribution

fi (x) =
1√

(2π)p det(Σi )
e−

1
2

(x−µi )
T Σ−1

i (x−µi ), x ∈ Rp

µ: mean vector

Σ: covariance matrix

Σ = E [(X − µ)T (X − µ)]
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Model P(X = x |Y = i) using Gaussian distributions
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LDA and QDA

The natural model for fi (x) is the multivariate Gaussian
distribution

fi (x) =
1√

(2π)p det(Σi )
e−

1
2

(x−µi )
T Σ−1

i (x−µi ), x ∈ Rp

Linear discriminant analysis (LDA): We assume

Σ1 = Σ2 = . . . = ΣK

Quadratic discriminant analysis (QDA): general cases
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Parameter estimation

We need to estimate

An estimate of the class probabilities πi

Estimate the mean vectors µ1, . . . , µK

Estimate the covariance matrices Σ1, . . . ,ΣK (or Σ for LDA)
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Parameter estimation: LDA

Suppose we have dataset (x1, y1), (x2, y2), . . . , (xn, yn) where ni
observations have label i .

An estimate of the class probabilities πi

π̂i =
ni
n

Estimate the mean vectors

µ̂i =
1

ni

∑
yj=i

xj

Estimate the covariance matrix Σ

Σ̂ =
1

N − K

K∑
i=1

∑
yj=i

(xj − µ̂i )(xj − µ̂i )T
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Decision rule

Suppose we have dataset (x1, y1), (x2, y2), . . . , (xn, yn) where ni
observations have label i .
A new instance x arrives, how to predict label of x?

Compute π̂i , µ̂i and Σ̂

Compute

P(Y = i |X = x) ≈ pk(x) =
fi (x , µ̂i , Σ̂)π̂i∑K
j=1 fj(x , µ̂j , Σ̂)π̂j

Bayes classifier: assign an observation to the class for which
the posterior probability pk(x) is greatest.
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LDA
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LDA: linearity of the decision boundary

Note that

pi (x) =
fi (x , µ̂i , Σ̂)π̂i∑K
j=1 fj(x , µ̂j , Σ̂)π̂j

and

fi (x) =
1√

(2π)p det(Σ̂)
e−

1
2

(x−µ̂i )
T Σ−1(x−µ̂i ), x ∈ Rp

Thus

log
pi (x)

pk(x)
= log

π̂i
π̂k
− 1

2
(µ̂i + µ̂k)T Σ̂−1(µ̂i − µ̂k) + xT Σ̂−1(µ̂i − µ̂k)

= β0 + xTβ
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How is that different from logistic regression?

Recall that for logistic regression

log
P[Y = 1|X = x ]

P[Y = 0|X = x ]
= β0 + xTβ

Both methods use linear decision boundary

Both are simple, and often perform very well.

However

The probability models are different

The estimations are different
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Practical problem when n� p

Estimating covariance matrices when n� p is challenging

The sample covariance Σ̂ is singular when n� p

Need regularization
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LDA
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