Mathematical techniques in data science

Lecture 7: Classification — Logistic regression and LDA

March 1st, 2019
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Chapter 4: Classification

Logistic regression
Linear Discriminant Analysis

Nearest neighbours

Support Vector Machines

Next Friday (03/08): Homework 1 due

@ Groups (for class projects) need to be formed by the end of
next week
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Class project: example

Dataset: 25,000 images of dogs and cats

Similar: Malaria cell images dataset, Sign language dataset
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Class project: example

Dataset: 285,000 credit card transactions

Similar: heart disease dataset
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Linear discriminant analysis
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Linear discriminant analysis

Suppose
o Ye{l,2,...,K}
e P(Y=i)=m;, i=12,... K.
o P(X =x|Y =1i)~ fi(x)

Then
P(Y = i|X = x) = P(X:x|Y:i)P.(Y:i) .
Ej:l P(X = x|Y = j)P(Y =)
_ il
> i)
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Model P(X = x|Y = i) using Gaussian distributions

The natural model for fi(x) is the multivariate Gaussian
distribution
fi(x) = 1 e—%(><—M;)TZ,-71(X—MI-)7 x € RP
(2m)P det(X;)

@ 41 mean vector

@ X : covariance matrix

T = E[(X —u) (X — )]
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LDA and QDA

The natural model for fi(x) is the multivariate Gaussian
distribution
fi(x) = 1 e—%(><—M;)TZ,-71(><—MI-)7 x € RP
(2m)P det(X;)

e Linear discriminant analysis (LDA): We assume
Y1 =3r=...= 2k

e Quadratic discriminant analysis (QDA): general cases
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Parameter estimation: LDA

Suppose we have dataset (x1,y1), (x2,¥2), ..., (Xn, ¥n) where n;
observations have label i.

@ An estimate of the class probabilities ;

@ Estimate the mean vectors
R 1
= — g Xj
n; g
yj=i

@ Estimate the covariance matrix >

s = NiKEZ(Xj_ﬂi)(Xj_ﬂi)T
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Decision rule

Suppose we have dataset (x1,y1), (x2,¥2), ..., (Xn, ¥n) Where n;
observations have label i.
A new instance x arrives, how to predict label of x?7

e Compute 7;, fi; and )y

o Compute

fi(x, fii, £)7i

K RSN
Zj:l G(Xa Hj> Z)ﬂ—j

@ Bayes classifier: assign an observation to the class for which
the posterior probability px(x) is greatest.

P(Y = i|X = x) = px(x) =
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LDA
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LDA: linearity of the decision boundary

Note that ~
fi(x, fli, 2)7;
pi(X): K SN
Zj:l G(Xnu’jvz)ﬂj
and
fi(x) = 1 e 3 (=) TE N (x— 1) x € RP
(2m)P det(X)
Thus
pi(x Aol \Tel1,a A PR DU
08 20 _tog B L p)TE (s — )+ xTE s — )
k(%) T 2
=Bo+x'8
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How is that different from logistic regression?

Recall that for logistic regression

PIY = 11X = x]

|
°CPlY = 0[X = x]

=Bo+x"5

Both methods use linear decision boundary

@ Both are simple, and often perform very well.

However

The probability models are different
The estimations are different
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Practical problem when n < p

e Estimating covariance matrices when n < p is challenging
@ The sample covariance 3 is singular when n < p

@ Need regularization
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>
5>
>
5>
>>>
>

import numpy as np

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 11, [3, 211D
y = np.array([1, 1, 1, 2, 2, 2])

clf = LinearDiscriminantAnalysis()

clf. fit(X, v)

LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,

>

(1]

solver="svd', store_covariance=False, tol=0.8001)
print{clf.predict([[-0.8, -1]11))
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Nearest neigbours
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Nearest neigbours

@ Suppose Y = {0, 1}
o Parameter: k

@ Use closest observations in the training set to make predictions
~ 1
Y(x) = % Z Yi
Ni(x)

Here Ni(x) denotes the k-nearest neighbors of x (w.r.t. some
metric, e.g. Euclidean distance)

Iabel(x) 0 if Y(x)<0.5
X) =
1 otherwise

@ Decision:
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Nearest neighbors

Note: Y = {0,1},

Ni(x)
A A
= e A
|
mE
. |
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Nearest neighbors

Decision boundary, kK = 3
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Nearest neighbors

KNM: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary s shown as a purple dashed
line.
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