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Chapter 9: Support Vector Machines

Maximal Margin Classifier

Support Vector Classifiers

Support Vector Machines

Friday (03/08): Homework 1 due

Groups (for class projects) need to be formed by the end of
the week
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Hyperplane

In a p-dimensional space, a hyperplane is an affine subspace
of dimension p.

In two dimensions, a hyperplane is defined by the equation

β0 + β1x1 + β2x2 = 0

In p dimensions:

β0 + β1x1 + β2x2 + . . .+ βpxp = 0

or alternatively

β0 + βT x = 0, where β ∈ Rp
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Hyperplane

H = {x ∈ Rp : β0 + βT x = 0}

If x1, x2 ∈ H, then βT (x1 − x2) = 0 → β is perpendicular to the
hyperplane H
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Hyperplane

If x ∈ Rp, the distance from x to H can be computed by

d(x ,H) =
1

‖β‖
|βT (x − x0)| =

|β0 + βT x |
‖β‖
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Hyperplane
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Separating hyperplane

Suppose we have data with label {−1, 1}, we want to separate the
data using a hyperplane

yi = sign(β0 + βT xi )
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Separating hyperplane

Problems:

Separating hyperplane may not exist

Assume that the data are perfectly separable by a hyperplane
→ then there might exist an infinite number of such
hyperplanes
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Maximal Margin Classifier
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Maximal Margin Classifier

Assume that the data are perfectly separable by a hyperplane
The minimal distance from the data to the hyperplane is call
the margin
Maximal margin hyperplane: the separating hyperplane that is
farthest from the training observations

Mathematical techniques in data science



Maximal Margin Classifier: formulation

Given a set of n training observations x1, . . . , xn ∈ R and
associated class labels yi ∈ {−1, 1}
Maximal margin hyperplane:

max
β0,β,M

M

subject to ‖β‖ = 1

and yi (β0 + βT xi ) ≥ M ∀i = 1, . . . , n.

Mathematical techniques in data science



Why?

First, for every separating hyperplane, we want the classifier
associated with the hyperplane to predict the labels correctly,
or

yi (β0 + βT xi ) ≥ 0 ∀i = 1, . . . , n.

Second, we want the distance from the points to the
hyperplane to be greater than the margin

|β0 + βT xi |
‖β‖

≥ M

If we constrain ‖β‖ = 1 then this becomes

yi (β0 + βT xi ) ≥ M ∀i = 1, . . . , n.

The idea of MMC is to find the separating hyperplane that
maximizes the margin
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MMC: Alternative form

max
β0,β,M

M

subject to ‖β‖ = 1

and yi (β0 + βT xi ) ≥ M ∀i = 1, . . . , n.

If we remove the constraint ‖β‖ = 1 then the optimization
problem becomes

max
β0,β,M

M

subject to yi (β0 + βT xi ) ≥ M‖β‖ ∀i = 1, . . . , n.

Mathematical techniques in data science



MMC: Alternative form

max
β0,β,M

M

subject to yi (β0 + βT xi ) ≥ M‖β‖ ∀i = 1, . . . , n.

If we rescale (β0, β) such that M‖β‖ = 1, then the
optimization problem becomes

min
β0,β
‖β‖2

subject to yi (β0 + βT xi ) ≥ 1 ∀i = 1, . . . , n.

This is a convex optimization problem with a quadratic object
and linear constraints
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Remark: support vectors

In this figure, we see that three training observations are
equidistant from the maximal margin hyperplane and lie along the
dashed lines indicating the width of the margin.
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Support Vector Classifiers
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Realistically, data are not separable by hyperplanes
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MMC is not robust to noises
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Support Vector Classifier

Idea: willing to consider a classifier based on a hyperplane
that does not perfectly separate the two classes

Goals:

Greater robustness to individual observations
Better classification of most of the training observations
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Support Vector Classifier

The hyperplane is chosen to correctly separate most of the training
observations into the two classes, but may mis-classify a few
observations

max
β0,β,M,ε1,ε2,...,εn

M

subject to ‖β‖ = 1

yi (β0 + βT xi ) ≥ M(1− εi ) ∀i = 1, . . . , n

εi ≥ 0,
n∑

i=1

εi ≤ C .
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Support Vector Classifier

max
β0,β,M,ε1,ε2,...,εn

M

subject to ‖β‖ = 1

yi (β0 + βT xi ) ≥ M(1− εi ) ∀i = 1, . . . , n

εi ≥ 0,
n∑

i=1

εi ≤ C .

ε1, . . . , εn are refereed to as slack variables

C can be regarded as a budget for the amount that the
margin can be violated by the n observations
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Slack variables

ε1, . . . , εn are refereed to as slack variables

If εi = 0 , the i th observation is on the correct side of the
margin

If εi > 0 , the i th observation is on the wrong side of the
margin

If εi > 1 , the i th observation is on the wrong side of the
separating hyperplane
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Support Vector Classifier
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Budget

C can be regarded as a budget for the amount that the
margin can be violated by the n observations

If C = 0 then there is no budget for violations to the margin
→ εi = 0 for all i
→ maximal margin classifier

Budget C increases → more tolerant of violations to the
margin → margin will widen

is a tunable parameter, usually chosen by cross-validation
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SVC: alternative form

The hyperplane is chosen to correctly separate most of the training
observations into the two classes, but may misclassify a few
observations

min
β0,β,ε1,ε2,...,εn

‖β‖2

subject to yi (β0 + βT xi ) ≥ (1− εi ) ∀i = 1, . . . , n

εi ≥ 0,
n∑

i=1

εi ≤ C .

Can be solved using standard optimization packages.
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Support Vector Machine
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Realistically, the boundary may be non-linear
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Idea: map the learning problem to a higher dimension

f (x , y) = (x , y , x2 + y2)
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Idea: map the learning problem to a higher dimension

More rigorously,

f (x , y) = (x , y , x2, y2, xy)

A hyperplane on R5, modeled by the equation β0 + βT x = 0 will
classify the points based on the sign of

β0 + β1x + β2y + β3x
2 + β4y

2 + β5xy

This corresponds to a quadratic boundary on the original space R2
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