# Mathematical techniques in data science 

Lecture 9: SVM and kernel trick
March 8th, 2019

## Chapter 9: Support Vector Machines

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines


## Hyperplane

- In a p-dimensional space, a hyperplane is an affine subspace of dimension $p$.
- In two dimensions, a hyperplane is defined by the equation

$$
\beta_{0}+\beta_{1} x^{(1)}+\beta_{2} x^{(2)}=0
$$

- In $p$ dimensions:

$$
\beta_{0}+\beta_{1} x^{(1)}+\beta_{2} x^{(2)}+\ldots+\beta_{p} x^{(p)}=0
$$

or alternatively

$$
\beta_{0}+\beta^{T} x=0, \quad \text { where } \beta \in \mathbb{R}^{p}
$$

## Separating hyperplane

Suppose we have data with label $\{-1,1\}$, we want to separate the data using a hyperplane

$$
y=\operatorname{sign}\left(\beta_{0}+\beta^{T} x\right)
$$



## Separating hyperplane



Problems:

- Separating hyperplane may not exist
- Assume that the data are perfectly separable by a hyperplane $\rightarrow$ then there might exist an infinite number of such hyperplanes


## Maximal Margin Classifier

## Maximal Margin Classifier

- Assume that the data are perfectly separable by a hyperplane
- The minimal distance from the data to the hyperplane is call the margin
- Maximal margin hyperplane: the separating hyperplane that is farthest from the training observations



## Maximal Margin Classifier: formulation

- Given a set of n training observations $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and associated class labels $y_{i} \in\{-1,1\}$
- Maximal margin hyperplane:

$$
\begin{aligned}
& \max _{\beta_{0}, \beta, M} M \\
& \text { subject to }\|\beta\|=1 \\
& \text { and } y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right) \geq M \quad \forall i=1, \ldots, n .
\end{aligned}
$$

## MMC: Alternative form

$\max _{\beta_{0}, \beta, M} M$
subject to $y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right) \geq M\|\beta\| \quad \forall i=1, \ldots, n$.

- If we rescale $\left(\beta_{0}, \beta\right)$ such that $M\|\beta\|=1$, then the optimization problem becomes

$$
\begin{aligned}
& \min _{\beta_{0}, \beta}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right) \geq 1 \quad \forall i=1, \ldots, n .
\end{aligned}
$$

- This is a convex optimization problem with a quadratic object and linear constraints


## Support Vector Classifiers



## Realistically, data are not separable by hyperplanes




FIGURE 9.5. Left: Two classes of observations are shown in blue and in purple, along with the maximal margin hyperplane. Right: An additional blue observation has been added, leading to a dramatic shift in the maximal margin hyperplane shown as a solid line. The dashed line indicates the maximal margin hyperplane that was obtained in the absence of this additional point.

## Support Vector Classifier

The hyperplane is chosen to correctly separate most of the training observations into the two classes, but may mis-classify a few observations

$$
\begin{aligned}
& \max _{\beta_{0}, \beta, M, \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}} M \\
& \text { subject to }\|\beta\|=1 \\
& \qquad y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right) \geq M\left(1-\epsilon_{i}\right) \quad \forall i=1, \ldots, n \\
& \epsilon_{i} \geq 0, \quad \sum_{i=1}^{n} \epsilon_{i} \leq C .
\end{aligned}
$$

## Support Vector Classifier




The hyperplane is chosen to correctly separate most of the training observations into the two classes, but may misclassify a few observations

$$
\begin{aligned}
& \min _{\beta_{0}, \beta, \epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right) \geq\left(1-\epsilon_{i}\right) \quad \forall i=1, \ldots, n \\
& \quad \epsilon_{i} \geq 0, \quad \sum_{i=1}^{n} \epsilon_{i} \leq C
\end{aligned}
$$

Can be solved using standard optimization packages.

## Support Vector Machine



Realistically, the boundary may be non-linear


## Idea: map the learning problem to a higher dimension



## Idea: map the learning problem to a higher dimension

More rigorously,

$$
f(x, y)=\left(x, y, x^{2}, y^{2}, x y\right)
$$

A hyperplane on $\mathbb{R}^{5}$, modeled by the equation $\beta_{0}+\beta^{T} x=0$ will classify the points based on the sign of

$$
\beta_{0}+\beta_{1} x+\beta_{2} y+\beta_{3} x^{2}+\beta_{4} y^{2}+\beta_{5} x y
$$

This corresponds to a quadratic boundary on the original space $\mathbb{R}^{2}$

## How to solve SVM's optimization

## MMC

Problem:

$$
\begin{aligned}
& \min _{\beta_{0}, \beta}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right) \geq 1 \quad \forall i=1, \ldots, n
\end{aligned}
$$

## Alternative form

Lagrange multiplier:

$$
L(\beta, \alpha)=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right)-1\right], \quad \text { where } \alpha_{i} \geq 0
$$

New problem:

$$
\min _{\beta} \max _{\alpha} L(\beta, \alpha)
$$

Idea:

- Consider a game with two players, Mindy and Max,
- Mindy goes first, choosing $\beta$. Max, observing Mindy's choice, selects $\alpha$ to maximize $L(\beta, \alpha)$
- Mindy, aware of Max's strategy, makes her initial choice to minimize $L(\beta, \alpha)$


## Minimax theory

Minimax theory: for some class of functions:

$$
\min _{\beta} \max _{\alpha} L(\beta, \alpha)=\max _{\alpha} \min _{\beta} L(\beta, \alpha)
$$

Recall:

$$
L(\beta, \alpha)=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right)-1\right], \quad \text { where } \alpha_{i} \geq 0
$$

Question: Given $\alpha$, what is the optimal value of $\beta$ ?

## Minimax theory

Recall:

$$
L(\beta, \alpha)=\frac{1}{2}\|\beta\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right)-1\right], \quad \text { where } \alpha_{i} \geq 0
$$

Question: Given $\alpha$, what is the optimal value of $\beta$ ?

$$
\begin{gathered}
\frac{\partial L}{\partial \beta^{(j)}}=\beta^{(j)}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{(j)} \\
\frac{\partial L}{\partial \beta_{0}}=\sum_{i=1}^{n} \alpha_{i} y_{i}
\end{gathered}
$$

Conclusion

$$
\beta^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

## Minimax theory

Conclusion

$$
\beta^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

Put this back into the expression of $L$ :

$$
\max _{\alpha \geq 0} \sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} \alpha_{i} y_{i} x_{i}^{\top} x_{j},
$$

Conclusion: To solve the MMC's optimization problem, we just need to have information about

$$
x_{i}^{T} x_{j}=\left\langle x_{i}, x_{j}\right\rangle \quad \forall i, j
$$

## Minimax theory

Note that

$$
\beta^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i}
$$

Decision function

$$
\beta_{0}+\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\left\langle x_{i}, x\right\rangle
$$

## ...back to SVM

## Idea: map the learning problem to a higher dimension



When mapping $x$ to $f(x)$ in a higher dimensions, make sure you can compute

$$
\left\langle f\left(x_{i}\right), f\left(x_{j}\right)\right\rangle \quad \forall i, j
$$

## Previous lecture

More rigorously,

$$
f(x, y)=\left(x, y, x^{2}, y^{2}, x y\right)
$$

A hyperplane on $\mathbb{R}^{5}$, modeled by the equation $\beta_{0}+\beta^{T} x=0$ will classify the points based on the sign of

$$
\beta_{0}+\beta_{1} x+\beta_{2} y+\beta_{3} x^{2}+\beta_{4} y^{2}+\beta_{5} x y
$$

This corresponds to a quadratic boundary on the original space $\mathbb{R}^{2}$

## A more careful mapping

Define

$$
f(x, y)=\left(1, \sqrt{2} x, \sqrt{2} y, x^{2}, y^{2}, \sqrt{2} x y\right)
$$

A hyperplane on $\mathbb{R}^{6}$, modeled by the equation $\beta_{0}+\beta^{T} x=0$ will classify the points based on the sign of

$$
\beta_{0}+\beta_{1}+\beta_{2} x+\beta_{3} y+\beta_{4} x^{2}+\beta_{5} y^{2}+\beta_{6} x y
$$

This corresponds to a quadratic boundary on the original space $\mathbb{R}^{2}$

## A more careful mapping

Moreover:

$$
\begin{aligned}
\langle f(x, y), f(u, v)\rangle & =1+2 x u+2 y v+x^{2} u^{2}+x^{2} v^{2}+2 x y u v \\
& =(1+x u+y v)^{2} \\
& =(1+\langle(x, y),(u, v)\rangle)^{2}
\end{aligned}
$$

In other the words,

$$
K\left(x_{i}, x_{j}\right)=\left\langle f\left(x_{i}\right), f\left(x_{j}\right)\right\rangle=\left(1+x_{i}^{T} x_{j}\right)^{2}
$$

can be computed quite easily.

## SVM on a higher dimensional space

Recall that in order to solve the optimization of SVM on the original space, we need to optimize

$$
\max _{\alpha \geq 0} \sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x_{j}
$$

If we want to do the same thing with the mapped data

$$
\max _{\alpha \geq 0} \sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} \alpha_{i} y_{i} K\left(x_{i}, x_{j}\right)
$$

Bonus: we don't need to know the form of $f$ at all!

We don't need to know the form of $f$, only need

$$
K(x, y)=\left\langle f\left(x_{i}\right), f\left(x_{j}\right)\right\rangle
$$

Question: Given $K: \mathbb{R}^{p} \times \mathbb{R}^{p}$, when can we guarantee that

$$
K(x, y)=\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle
$$

for some function $h$ ?

## Kernel: condition

Question: Given $K: \mathbb{R}^{p} \times \mathbb{R}^{p}$, when can we guarantee that

$$
K(x, y)=\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle
$$

for some function $h$ ?

## Definition

Let X be a set. A symmetric kernel $K: X \times X \rightarrow R$ is said to be a positive definite kernel if the matrix

$$
\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n}
$$

is positive semi-definite for all $x_{1}, \ldots, x_{n}$ and $n \in \mathbb{N}$, i.e.

$$
\sum_{i, j} K\left(x_{i}, x_{j}\right) c_{i} c_{j} \geq 0
$$

for any $c \in \mathbb{R}^{n}$.

## Popular kernels

- Polynomials

$$
K(x, u)=[1+\langle x, u\rangle]^{d}
$$

- RBF (Gaussian) kernels

$$
K(x, u)=e^{-\gamma\|x-u\|^{2}}
$$

- Neural network

$$
K(x, u)=\tanh \left(\kappa_{1}\langle x, u\rangle+\kappa_{2}\right)
$$



FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

