Mathematical techniques in data science

Lecture 9: SVM and kernel trick

March 8th, 2019

Chapter 9: Support Vector Machines

- Maximal Margin Classifier
- Support Vector Classifiers
- Support Vector Machines

Hyperplane

- In a p-dimensional space, a hyperplane is an affine subspace of dimension p.
- In two dimensions, a hyperplane is defined by the equation

$$\beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} = 0$$

• In p dimensions:

$$\beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \ldots + \beta_p x^{(p)} = 0$$

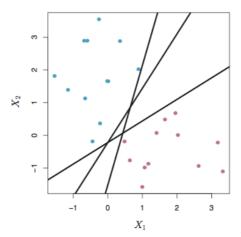
or alternatively

$$\beta_0 + \beta^T x = 0$$
, where $\beta \in \mathbb{R}^p$

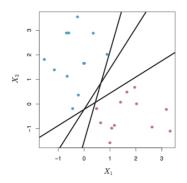
Separating hyperplane

Suppose we have data with label $\{-1,1\}$, we want to separate the data using a hyperplane

$$y = \operatorname{sign}(\beta_0 + \beta^T x)$$



Separating hyperplane



Problems:

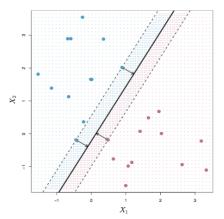
- Separating hyperplane may not exist
- Assume that the data are perfectly separable by a hyperplane

 → then there might exist an infinite number of such
 hyperplanes

Maximal Margin Classifier

Maximal Margin Classifier

- Assume that the data are perfectly separable by a hyperplane
- The minimal distance from the data to the hyperplane is call the margin
- Maximal margin hyperplane: the separating hyperplane that is farthest from the training observations



Maximal Margin Classifier: formulation

- Given a set of n training observations $x_1, \ldots, x_n \in \mathbb{R}$ and associated class labels $y_i \in \{-1, 1\}$
- Maximal margin hyperplane:

```
\max_{\beta_0,\beta,M} M
subject to \|\beta\| = 1
and y_i(\beta_0 + \beta^T x_i) \ge M \quad \forall i = 1, \dots, n.
```

MMC: Alternative form

$$\max_{\beta_0,\beta,M} M$$
subject to $y_i(\beta_0 + \beta^T x_i) \ge M \|\beta\| \quad \forall i = 1,\dots,n.$

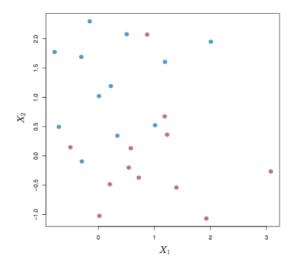
• If we rescale (β_0, β) such that $M\|\beta\| = 1$, then the optimization problem becomes

$$\begin{aligned} & \min_{\beta_0,\beta} \|\beta\|^2 \\ & \text{subject to } y_i(\beta_0 + \beta^T x_i) \geq 1 \quad \forall i = 1, \dots, n. \end{aligned}$$

 This is a convex optimization problem with a quadratic object and linear constraints

Support Vector Classifiers

Realistically, data are not separable by hyperplanes



MMC is not robust to noises

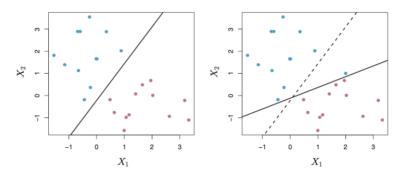


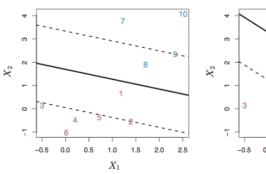
FIGURE 9.5. Left: Two classes of observations are shown in blue and in purple, along with the maximal margin hyperplane. Right: An additional blue observation has been added, leading to a dramatic shift in the maximal margin hyperplane shown as a solid line. The dashed line indicates the maximal margin hyperplane that was obtained in the absence of this additional point.

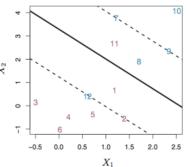
Support Vector Classifier

The hyperplane is chosen to correctly separate most of the training observations into the two classes, but may mis-classify a few observations

$$\begin{aligned} \max_{\beta_0,\beta,M,\epsilon_1,\epsilon_2,\dots,\epsilon_n} M \\ \text{subject to } \|\beta\| &= 1 \\ y_i(\beta_0 + \beta^T x_i) &\geq M(1 - \epsilon_i) \quad \forall i = 1,\dots,n \\ \epsilon_i &\geq 0, \quad \sum_{i=1}^n \epsilon_i \leq C. \end{aligned}$$

Support Vector Classifier





SVC: alternative form

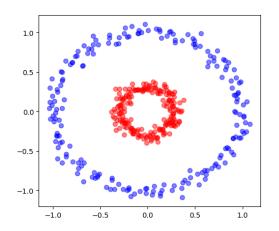
The hyperplane is chosen to correctly separate most of the training observations into the two classes, but may misclassify a few observations

$$\begin{aligned} \min_{\beta_0,\beta,\epsilon_1,\epsilon_2,...,\epsilon_n} & \|\beta\|^2 \\ \text{subject to } y_i(\beta_0 + \beta^T x_i) \geq (1 - \epsilon_i) \quad \forall i = 1, \ldots, n \\ & \epsilon_i \geq 0, \quad \sum_{i=1}^n \epsilon_i \leq C. \end{aligned}$$

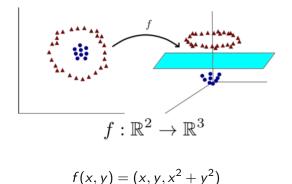
Can be solved using standard optimization packages.

Support Vector Machine

Realistically, the boundary may be non-linear



Idea: map the learning problem to a higher dimension



Idea: map the learning problem to a higher dimension

More rigorously,

$$f(x,y) = (x, y, x^2, y^2, xy)$$

A hyperplane on \mathbb{R}^5 , modeled by the equation $\beta_0 + \beta^T x = 0$ will classify the points based on the sign of

$$\beta_0 + \beta_1 x + \beta_2 y + \beta_3 x^2 + \beta_4 y^2 + \beta_5 xy$$

This corresponds to a quadratic boundary on the original space \mathbb{R}^2

How to solve SVM's optimization

MMC

Problem:

$$\begin{aligned} & \min_{\beta_0,\beta} \|\beta\|^2 \\ & \text{subject to } y_i(\beta_0 + \beta^T x_i) \geq 1 \quad \ \forall i = 1,\dots,n. \end{aligned}$$

Alternative form

Lagrange multiplier:

$$L(\beta, \alpha) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^n \alpha_i [y_i (\beta_0 + \beta^T x_i) - 1], \text{ where } \alpha_i \ge 0$$

New problem:

$$\min_{\beta} \max_{\alpha} L(\beta, \alpha)$$

Idea:

- Consider a game with two players, Mindy and Max,
- Mindy goes first, choosing β . Max, observing Mindy's choice, selects α to maximize $L(\beta, \alpha)$
- Mindy, aware of Max's strategy, makes her initial choice to minimize $L(\beta, \alpha)$

Minimax theory: for some class of functions:

$$\min_{\beta} \max_{\alpha} L(\beta, \alpha) = \max_{\alpha} \min_{\beta} L(\beta, \alpha)$$

Recall:

$$L(\beta, \alpha) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^n \alpha_i [y_i (\beta_0 + \beta^T x_i) - 1], \text{ where } \alpha_i \ge 0$$

Question: Given α , what is the optimal value of β ?

Recall:

$$L(\beta, \alpha) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^n \alpha_i [y_i (\beta_0 + \beta^T x_i) - 1], \text{ where } \alpha_i \ge 0$$

Question: Given α , what is the optimal value of β ?

$$\frac{\partial L}{\partial \beta^{(j)}} = \beta^{(j)} - \sum_{i=1}^{n} \alpha_i y_i x_i^{(j)}$$

$$\frac{\partial L}{\partial \beta_0} = \sum_{i=1}^n \alpha_i y_i$$

Conclusion

$$\beta^* = \sum_{i=1}^n \alpha_i y_i x_i$$

Conclusion

$$\beta^* = \sum_{i=1}^n \alpha_i y_i x_i$$

Put this back into the expression of *L*:

$$\max_{\alpha \ge 0} \quad \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} \alpha_i y_i x_i^{\mathsf{T}} x_j,$$

Conclusion: To solve the MMC's optimization problem, we just need to have information about

$$x_i^T x_j = \langle x_i, x_j \rangle \quad \forall i, j$$

Note that

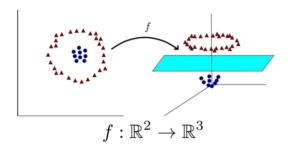
$$\beta^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

Decision function

$$\beta_0 + \sum_{i=1}^n \alpha_i^* y_i \langle x_i, x \rangle$$

...back to SVM

Idea: map the learning problem to a higher dimension



When mapping x to f(x) in a higher dimensions, make sure you can compute

$$\langle f(x_i), f(x_j) \rangle \quad \forall i, j$$

Previous lecture

More rigorously,

$$f(x,y) = (x, y, x^2, y^2, xy)$$

A hyperplane on \mathbb{R}^5 , modeled by the equation $\beta_0 + \beta^T x = 0$ will classify the points based on the sign of

$$\beta_0 + \beta_1 x + \beta_2 y + \beta_3 x^2 + \beta_4 y^2 + \beta_5 xy$$

This corresponds to a quadratic boundary on the original space \mathbb{R}^2

A more careful mapping

Define

$$f(x,y) = (1, \sqrt{2}x, \sqrt{2}y, x^2, y^2, \sqrt{2}xy)$$

A hyperplane on \mathbb{R}^6 , modeled by the equation $\beta_0 + \beta^T x = 0$ will classify the points based on the sign of

$$\beta_0 + \beta_1 + \beta_2 x + \beta_3 y + \beta_4 x^2 + \beta_5 y^2 + \beta_6 xy$$

This corresponds to a quadratic boundary on the original space \mathbb{R}^2

A more careful mapping

Moreover:

$$\langle f(x,y), f(u,v) \rangle = 1 + 2xu + 2yv + x^2u^2 + x^2v^2 + 2xyuv$$

= $(1 + xu + yv)^2$
= $(1 + \langle (x,y), (u,v) \rangle)^2$

In other the words,

$$K(x_i, x_j) = \langle f(x_i), f(x_j) \rangle = (1 + x_i^T x_j)^2$$

can be computed quite easily.

SVM on a higher dimensional space

Recall that in order to solve the optimization of SVM on the original space, we need to optimize

$$\max_{\alpha \ge 0} \quad \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} \alpha_i y_i x_i^{\mathsf{T}} x_j,$$

If we want to do the same thing with the mapped data

$$\max_{\alpha \geq 0} \quad \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} \alpha_i y_i K(x_i, x_j),$$

Bonus: we don't need to know the form of f at all!

The kernel trick

We don't need to know the form of f, only need

$$K(x, y) = \langle f(x_i), f(x_i) \rangle$$

Question: Given $K : \mathbb{R}^p \times \mathbb{R}^p$, when can we guarantee that

$$K(x, y) = \langle h(x_i), h(x_j) \rangle$$

for some function h?

Kernel: condition

Question: Given $K : \mathbb{R}^p \times \mathbb{R}^p$, when can we guarantee that

$$K(x,y) = \langle h(x_i), h(x_j) \rangle$$

for some function *h*?

Definition

Let X be a set. A symmetric kernel $K: X \times X \to R$ is said to be a positive definite kernel if the matrix

$$[K(x_i,x_j)]_{i,j=1}^n$$

is positive semi-definite for all x_1, \ldots, x_n and $n \in \mathbb{N}$, i.e.

$$\sum_{i,j} K(x_i,x_j) c_i c_j \geq 0$$

for any $c \in \mathbb{R}^n$.

Popular kernels

Polynomials

$$K(x, u) = [1 + \langle x, u \rangle]^d$$

• RBF (Gaussian) kernels

$$K(x, u) = e^{-\gamma ||x-u||^2}$$

Neural network

$$K(x, u) = tanh(\kappa_1\langle x, u \rangle + \kappa_2)$$

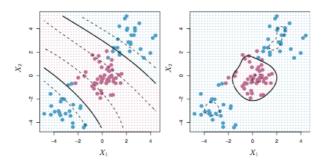


FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.