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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural network
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bootstrap + Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Chapter 3 & 6: Topics on Linear regression

Linear regression

Subset selection

Shrinkage methods

Note: Homework 2 is uploaded. Due on 03/29 at 5pm.
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Linear model: settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ε

Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(n)


Least squares regression

β̂LS = min
β
‖Y− Xβ‖22
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`0 regularization

`0 regularization

β̂0 = min
β
‖Y− Xβ‖22 + λ

p∑
i=1

1β(i) 6=0

where λ > 0 is a parameter

pay a fixed price λ for including a given variable into the model

variables that do not significantly contribute to reducing the
error are excluded from the model (i.e., βi = 0)

problem: difficult to solve (combinatorial optimization).
Cannot be solved efficiently for a large number of variables.
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`2 (Tikhonov) regularization

Ridge regression/ Tikhonov regularization

β̂RIDGE = min
β
‖Y− Xβ‖22 + λ

p∑
j=1

[β(j)]2

where λ > 0 is a parameter

shrinks the coefficients by imposing a penalty on their size

penalty is a smooth function.

easy to solve (solution can be written in closed form)

can be used to regularize a rank deficient problem (n < p)
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`2 (Tikhonov) regularization

∂
(
‖Y− Xβ‖22 + λ‖β‖2

)
∂β

= 2XT (Y− Xβ) + 2λβ

The critical point satisfies

(XTX + λI)β = XTY

Note: (XTX + λI) is positive definite, and thus invertible

Thus
β̂RIDGE = (XTX + λI)−1XTY
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Compare to classical inverse problem

Typical inverse problem

min
u
‖F (u)− G‖22 + λ‖u‖22

At some point we need to let λ→ 0.

Ridge regression

min
β
‖Y− Xβ‖22 + λ‖β‖22

What we really want to maximize is

E(X ,Y )∼P [‖Y − Xβ‖2]

We may keep λ away from 0.
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Bias-variance decomposition

MSE (θ̂) = Var(θ̂) + (bias)2
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Stein’s phenomenon

Given i.i.d. X1, . . . ,Xn samples from N (µ, Ip) (p ≥ 3), we
wish to estimate µ

The accuracy of an estimator is measured by the risk function

MSE (µ̂) = E [‖µ̂− µ‖2]

The standard estimate is

X̄ =
X1 + . . .+ Xn

n

which minimizes

min
c

n∑
i=1

‖Xi − c‖2
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Stein’s phenomenon

The standard estimate is

X̄ =
X1 + . . .+ Xn

n

which minimizes

min
c

n∑
i=1

‖Xi − c‖2

James-Stein’s estimator

µJS =

(
1− p − 2

n‖X̄‖2

)
X̄

is a strictly better estimator than the sample mean X̄
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`2 (Tikhonov) regularization

β̂RIDGE = (XTX + λI)−1XTY

When λ > 0, the estimator is defined even when n < p

When λ = 0 and n > p, we recover the usual least squares
solution
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`2 (Tikhonov) regularization

Mathematical techniques in data science



The Lasso
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Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator)

β̂lasso = min
β
‖Y− Xβ‖22 + λ

p∑
j=1

|β(j)|

As with ridge regression, the lasso shrinks the coefficient
estimates towards zero

However, the `1 penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when λ is
sufficiently large

the lasso performs variable selection → models are easier to
interpret
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

min
β
‖Y− Xβ‖22

subject to

p∑
j=1

|β(j)| ≤ s
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Lasso: alternative form
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Lasso

The Lasso:

β̂lasso = min
β
‖Y− Xβ‖22 + λ

p∑
j=1

|β(j)|

More “global” approach to selecting variables compared to
previously discussed greedy approaches

Can be seen as a convex relaxation of the β̂0 problem

No closed form solution, but can solved efficiently using
convex optimization methods.

Performs well in practice

Very popular. Active area of research
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Other shrinkage methods

`q regularization (q ≥ 0):

β̂ = min
β
‖Y− Xβ‖22 + λ

p∑
j=1

[β(j)]q
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Other shrinkage methods

Elastic net

λ

p∑
j=1

α[β(j)]2 + (1− α)|β(j)|
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Other methods

Least angle regression (LAR)

The Dantzig Selector

The grouped lasso
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