Mathematical techniques in data science

Lecture 12: Shrinkage methods

March 15th, 2019

Mathematical techniques in data science

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5,6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural network
12	$PCA \to Manifold$ learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bootstrap + Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

æ

< ∃ >

- Linear regression
- Subset selection
- Shrinkage methods

Note: Homework 2 is uploaded. Due on 03/29 at 5pm.

• Linear model

$$Y = \beta^{(0)} + \beta^{(1)} X^{(1)} + \beta^{(2)} X^{(2)} + \dots \beta^{(p)} X^{(p)} + \epsilon$$

• Equivalent to

$$\mathbf{Y} = \mathbf{X}\beta, \qquad \beta = \begin{bmatrix} \beta^{(0)} \\ \beta^{(1)} \\ \vdots \\ \beta^{(n)} \end{bmatrix}$$

• Least squares regression

$$\hat{\beta}^{LS} = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2$$

(~)

• ℓ_0 regularization

$$\hat{\beta}^0 = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{i=1}^p \mathbf{1}_{\beta^{(i)} \neq 0}$$

where $\lambda > 0$ is a parameter

- pay a fixed price λ for including a given variable into the model
- variables that do not significantly contribute to reducing the error are excluded from the model (i.e., $\beta_i = 0$)
- problem: difficult to solve (combinatorial optimization).
 Cannot be solved efficiently for a large number of variables.

ℓ_2 (Tikhonov) regularization

• Ridge regression/ Tikhonov regularization

$$\hat{\beta}^{RIDGE} = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{j=1}^{p} [\beta^{(j)}]^2$$

where $\lambda > 0$ is a parameter

- shrinks the coefficients by imposing a penalty on their size
- penalty is a smooth function.
- easy to solve (solution can be written in closed form)
- can be used to regularize a rank deficient problem (n < p)

ℓ_2 (Tikhonov) regularization

$$\frac{\partial \left(\|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|^2 \right)}{\partial \beta} = 2\mathbf{X}^T (\mathbf{Y} - \mathbf{X}\beta) + 2\lambda\beta$$

• The critical point satisfies

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})\beta = \mathbf{X}^{\mathsf{T}}\mathbf{Y}$$

Note: (**X**^T**X** + λ**I**) is positive definite, and thus invertible
 Thus

$$\hat{\beta}^{\mathsf{RIDGE}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

Compare to classical inverse problem

• Typical inverse problem

$$\min_{u} \|F(u) - G\|_{2}^{2} + \lambda \|u\|_{2}^{2}$$

At some point we need to let $\lambda \rightarrow 0$.

Ridge regression

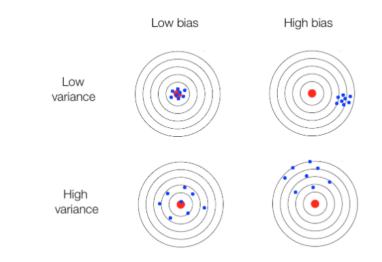
$$\min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_2^2$$

What we really want to maximize is

$$\mathbb{E}_{(X,Y)\sim P}[\|Y-X\beta\|^2]$$

We may keep λ away from 0.

Bias-variance decomposition



$$MSE(\hat{\theta}) = Var(\hat{\theta}) + (bias)^2$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Stein's phenomenon

- Given i.i.d. X₁,..., X_n samples from N(µ, I_p) (p ≥ 3), we wish to estimate µ
- The accuracy of an estimator is measured by the risk function

$$MSE(\hat{\mu}) = E[\|\hat{\mu} - \mu\|^2]$$

• The standard estimate is

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n}$$

which minimizes

$$\min_{c}\sum_{i=1}^{n}\|X_i-c\|^2$$

Stein's phenomenon

• The standard estimate is

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n}$$

which minimizes

$$\min_{c}\sum_{i=1}^{n}\|X_{i}-c\|^{2}$$

James-Stein's estimator

$$\mu^{JS} = \left(1 - \frac{p-2}{n\|\bar{X}\|^2}\right)\bar{X}$$

is a strictly better estimator than the sample mean $ar{X}$

$$\hat{\beta}^{RIDGE} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

- When $\lambda > 0$, the estimator is defined even when n < p
- When λ = 0 and n > p, we recover the usual least squares solution

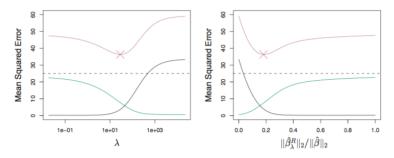


FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

The Lasso

Mathematical techniques in data science

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

• The Lasso (Least Absolute Shrinkage and Selection Operator)

$$\hat{eta}^{\textit{lasso}} = \min_{eta} \|\mathbf{Y} - \mathbf{X}eta\|_2^2 + \lambda \sum_{j=1}^{p} |eta^{(j)}|$$

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero
- However, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when λ is sufficiently large
- $\bullet\,$ the lasso performs variable selection $\rightarrow\,$ models are easier to interpret

$$\begin{split} \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 \\ \text{subject to } \sum_{j=1}^p |\beta^{(j)}| \leq s \end{split}$$

Lasso: alternative form

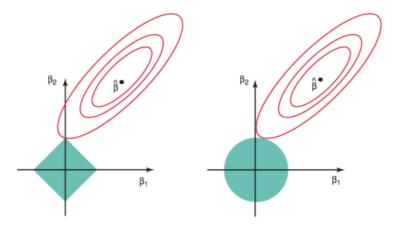


FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

同 ト イ ヨ ト イ ヨ ト

• The Lasso:

$$\hat{eta}^{\textit{lasso}} = \min_eta \| \mathbf{Y} - \mathbf{X}eta \|_2^2 + \lambda \sum_{j=1}^p |eta^{(j)}|$$

- More "global" approach to selecting variables compared to previously discussed greedy approaches
- Can be seen as a convex relaxation of the $\hat{\beta}^0$ problem
- No closed form solution, but can solved efficiently using convex optimization methods.
- Performs well in practice
- Very popular. Active area of research

Other shrinkage methods

• ℓ_q regularization $(q \ge 0)$:

$$\hat{\beta} = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{j=1}^{p} [\beta^{(j)}]^q$$

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_j|^q$ for given values of q.

- ∢ ≣ ▶

A D

< ∃ >

э

Other shrinkage methods

Elastic net

$$\lambda \sum_{j=1}^{p} \alpha [\beta^{(j)}]^2 + (1-\alpha) |\beta^{(j)}|$$

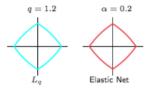


FIGURE 3.13. Contours of constant value of $\sum_j |\beta_j|^q$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_j (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Least angle regression (LAR)
- The Dantzig Selector
- The grouped lasso