Mathematical techniques in data science

Lecture 13: Model consistency the lasso estimator

March 18th, 2019

Mathematical techniques in data science

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5,6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural network
12	$PCA \to Manifold$ learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bootstrap + Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

æ

< ∃ >

- Linear regression
- Subset selection
- Shrinkage methods
- Model consistency of lasso

Note: Homework 2 is uploaded. Due on 03/29 at 5pm.

• We start with the simple linear regression problem

$$Y = eta_1 X^{(1)} + eta_2 X^{(2)} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Sparsity: assume that the data is generated using the "true" vector of parameters β^{*} = (β^{*}₁, 0).
- We assume that $E[X^{(1)}] = E[X^{(2)}] = 0$.

- we observe a dataset $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- use the same notations as in the previous lectures

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} \\ \cdots & \cdots \\ x_n^{(1)} & x_n^{(2)} \end{bmatrix}$$

The lasso estimator solves the optimization problem

$$\hat{\beta} = \min_{\beta} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda(|\beta_1| + |\beta_2|).$$

We want to investigate the conditions under which we can verify that

$$sign(\hat{\beta}_1) = sign(\beta_1^*)$$
 and $\hat{\beta}_2 = 0$

同 ト イヨ ト イヨ ト

э

Issue: the penalty of lasso is non-differentiable

Definition

We say that a vector $s \in \mathbb{R}^k$ is a subgradient for the ℓ_1 -norm evaluated at $\beta \in \mathbb{R}^k$, written as $s \in \partial \|\beta\|$ if for $i = 1, \ldots, k$ we have

 $s_i = sign(\beta_i)$ if $\beta_i \neq 0$ and $s_i \in [-1, 1]$ otherwise.

Theorem

(a) A vector $\hat{\beta}$ solve the lasso program if and only if there exists a $\hat{z} \in \partial \|\hat{\beta}\|$ such that

$$X^{T}(Y - X\hat{\beta}) - \lambda \hat{z} = 0$$
 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual feasibility condition

 $|\hat{z}_2| < 1$

then any lasso solution $\tilde{\beta}$ satisfies $\tilde{\beta}_2 = 0$.

(c) Under the condition of part (b), if $X^{(1)} \neq 0$, then $\hat{\beta}$ is the unique lasso solution.

The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of $(\tilde{\beta}, \tilde{z})$ according to the following steps:

• First, we obtain \tilde{eta}_1 by solving the restricted lasso problem

$$\tilde{\beta}_1 = \min_{\beta = (\beta_1, 0)} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda(|\beta_1|).$$

Choose a subgradient $\tilde{z}_1 \in \mathbb{R}$ for the ℓ_1 -norm evaluated at $\tilde{\beta}_1$

- Second, we solve for a vector \tilde{z}_2 satisfying equation (0.1), and check whether or not the dual feasibility condition $|\tilde{z}_2| < 1$ is satisfied
- Third, we check whether the sign consistency condition

$$\tilde{z}_1 = sign(\beta_1^*)$$

is satisfied.

- This procedure is not a practical method for solving the ℓ_1 -regularized optimization problem, since solving the restricted problem in Step 1 requires knowledge about the sparsity of β^*
- Rather, the utility of this constructive procedure is as a proof technique: it succeeds if and only if the lasso has a optimal solution with the correct signed support.

We note that the matrix form of equation (0.1) can be written as

$$[X^{(1)}]^{T}(Y - X^{(1)}\beta_{1} - X^{(2)}\beta_{2}) - \lambda \hat{z}_{1} = 0$$
$$[X^{(2)}]^{T}(Y - X^{(1)}\beta_{1} - X^{(2)}\beta_{2}) - \lambda \hat{z}_{2} = 0$$

To simplify the notation, we denote

$$C_{ij} = [X^{(i)}]^T [X^{(j)}]$$

Step 1

• we find $\tilde{\beta}_1$ and \tilde{z}_1 that satisfies

$$[X^{(1)}]^{\mathsf{T}}(Y - X^{(1)}\tilde{\beta}_1) - \lambda \tilde{z}_1 = 0$$

 Moreover, to make sure that the sign consistency in Step 3 is satisfied, we impose that

$$ilde{z}_1 = sign(eta_1^*) \quad ext{and} \quad ilde{eta}_1 = C_{11}^{-1}([X^{(1)}]^{ op}Y - \lambda sign(eta_1^*)).$$

This is acceptable as long as $ilde{z}_1\in\partial| ilde{eta}_1|.$ That is,

$${\it sign}(ilde{eta}_1) = {\it sign}(eta_1^*)$$

• Step 2:

$$[X^{(2)}]^{T}(Y - X^{(1)}\tilde{\beta}_{1}) - \lambda \hat{z}_{2} = 0$$
• Choose

$$\tilde{z} = \frac{1}{1} [Y^{(2)}]^{T} (Y - Y^{(1)}\tilde{\beta}_{1}) - \lambda \hat{z}_{2} = 0$$

$$\tilde{z}_2 = \frac{1}{\lambda} [X^{(2)}]^T (Y - X^{(1)} \tilde{\beta}_1).$$

We want $|\tilde{z}_2| < 1$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

In principle, we want two conditions:

•
$$\mathit{sign}(ilde{eta}_1) = \mathit{sign}(eta_1^*)$$

•
$$|\tilde{z}_2| < 1$$

Recalling that $Y = X^{(1)} \beta_1^* + \epsilon$, we have

$$\tilde{\beta}_1 = C_{11}^{-1}([X^{(1)}]^T (X^{(1)}\beta_1^* + \epsilon) - \lambda sign(\beta_1^*)) = \beta_1^* + C_{11}^{-1}([X^{(1)}]^T \epsilon - \lambda sign(\beta_1^*)))$$

/∄ ▶ ◀ ⋽ ▶ ◀

Thus if we denote

$$\Delta = C_{11}^{-1}([X^{(1)}]^{\mathsf{T}}\epsilon - \lambda \operatorname{sign}(\beta_1^*)))$$

then the first condition can be further simplified as $sign(\beta_1^*) = sign(\beta_1^* + \Delta)$. Similarly,

$$\begin{split} \tilde{z}_2 &= \frac{1}{\lambda} [X^{(2)}]^T (X^{(1)} \beta_1^* + \epsilon - X^{(1)} \tilde{\beta}_1) \\ &= \frac{1}{\lambda} [X^{(2)}]^T (X^{(1)} \Delta + \epsilon) \end{split}$$

/⊒ ► < ∃ ►

- we assume that the observations are collected with no noise $(\epsilon = 0)$.
- Then

$$\Delta = -C_{11}^{-1}\lambda sign(\beta_1^*)$$

and

$$ilde{z}_2 = rac{-1}{\lambda} C_{21} \Delta = C_{21} C_{11}^{-1} \textit{sign}(\beta_1^*)$$

- < ∃ →

- Mutual incoherence: $|C_{21}C_{11}^{-1}| < 1$.
- Minimum signal: $|\beta_1^*| > \lambda C_{11}^{-1}$

-∢ ≣ ▶