Mathematical techniques in data science

Lecture 14: Model consistency of the lasso estimator

March 20th, 2019

Mathematical techniques in data science

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5,6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural network
12	$PCA \to Manifold$ learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bootstrap + Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

æ

< ∃ >

- Note: Model consistency of lasso
- Further readings:
 - Zhao and Yu (2006)
 - Wainright (2009)
 - Sparsity, the lasso, and friends (Ryan Tibshirani)

• We start with the simple linear regression problem

$$Y = eta_1 X^{(1)} + eta_2 X^{(2)} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Sparsity: assume that the data is generated using the "true" vector of parameters β^{*} = (β^{*}₁, 0).
- We assume that $E[X^{(1)}] = E[X^{(2)}] = 0$.

- we observe a dataset $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- use the same notations as in the previous lectures

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} \\ \cdots & \cdots \\ x_n^{(1)} & x_n^{(2)} \end{bmatrix}$$

The lasso estimator solves the optimization problem

$$\hat{\beta} = \min_{\beta} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda(|\beta_1| + |\beta_2|).$$

We want to investigate the conditions under which we can verify that

$$sign(\hat{\beta}_1) = sign(\beta_1^*)$$
 and $\hat{\beta}_2 = 0$

同 ト イヨ ト イヨ ト

э

Theorem

(a) A vector $\hat{\beta}$ solve the lasso program if and only if there exists a $\hat{z} \in \partial \|\hat{\beta}\|$ such that

$$\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) - \lambda \hat{z} = 0$$
 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual feasibility condition

 $|\hat{z}_2| < 1$

then any lasso solution $\tilde{\beta}$ satisfies $\tilde{\beta}_2 = 0$.

(c) Under the condition of part (b), if $\mathbf{X}^{(1)} \neq 0$, then $\hat{\beta}$ is the unique lasso solution.

The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of $(\tilde{\beta}, \tilde{z})$ according to the following steps:

• First, we obtain \tilde{eta}_1 by solving the restricted lasso problem

$$\tilde{\beta}_1 = \min_{\beta = (\beta_1, 0)} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda(|\beta_1|).$$

Choose a subgradient $\tilde{z}_1 \in \mathbb{R}$ for the ℓ_1 -norm evaluated at $\tilde{\beta}_1$

- Second, we solve for a vector \tilde{z}_2 satisfying equation (0.1), and check whether or not the dual feasibility condition $|\tilde{z}_2| < 1$ is satisfied
- Third, we check whether the sign consistency condition

$$\tilde{z}_1 = sign(\beta_1^*)$$

is satisfied.

We note that the matrix form of equation (0.1) can be written as

$$[\mathbf{X}^{(1)}]^{T} (\mathbf{Y} - \mathbf{X}^{(1)}\beta_{1} - \mathbf{X}^{(2)}\beta_{2}) - \lambda \hat{z}_{1} = 0$$
$$[\mathbf{X}^{(2)}]^{T} (\mathbf{Y} - \mathbf{X}^{(1)}\beta_{1} - \mathbf{X}^{(2)}\beta_{2}) - \lambda \hat{z}_{2} = 0$$

To simplify the notation, we denote

$$C_{ij} = [\mathbf{X}^{(i)}]^{\mathsf{T}}[\mathbf{X}^{(j)}]$$

Step 1

• we find $\tilde{\beta}_1$ and \tilde{z}_1 that satisfies

$$[\mathbf{X}^{(1)}]^{\mathcal{T}}(\mathbf{Y} - \mathbf{X}^{(1)}\tilde{eta}_1) - \lambda \tilde{z}_1 = 0$$

 Moreover, to make sure that the sign consistency in Step 3 is satisfied, we impose that

$$ilde{z}_1 = \textit{sign}(eta_1^*) \quad \text{and} \quad ilde{eta}_1 = \textit{C}_{11}^{-1}([\textbf{X}^{(1)}]^{ au} \textbf{Y} - \lambda \textit{sign}(eta_1^*)).$$

This is acceptable as long as $ilde{z}_1\in\partial| ilde{eta}_1|.$ That is,

$${\it sign}(ilde{eta}_1) = {\it sign}(eta_1^*)$$

• Step 2:

$$[\mathbf{X}^{(2)}]^{T}(\mathbf{Y} - \mathbf{X}^{(1)}\tilde{\beta}_{1}) - \lambda \tilde{z}_{2} = 0$$
• Choose

$$\tilde{z}_{2} = \frac{1}{\lambda} [\mathbf{X}^{(2)}]^{T} (\mathbf{Y} - \mathbf{X}^{(1)}\tilde{\beta}_{1}).$$

We want $|\tilde{z}_2| < 1$.

・ロン ・部 と ・ ヨン ・ ヨン …

æ

In principle, we want two conditions:

•
$$sign(\beta_1^*) = sign(\beta_1^* + \Delta)$$

where

$$\Delta = C_{11}^{-1}([\mathbf{X}^{(1)}]^{\mathsf{T}} \epsilon - \lambda \operatorname{sign}(\beta_1^*)))$$

• $|\tilde{z}_2| < 1$ where

$$ilde{z}_2 = rac{1}{\lambda} [\mathbf{X}^{(2)}]^{\mathcal{T}} (\mathbf{X}^{(1)} \Delta + \epsilon)$$

伺 ト く ヨ ト く ヨ ト

э

Zero-noise setting

we assume that the observations are collected with no noise $(\epsilon = 0).$

• Then

$$\Delta = -C_{11}^{-1}\lambda sign(eta_1^*)$$

and

$$\tilde{z}_2 = \frac{-1}{\lambda} C_{21} \Delta = C_{21} C_{11}^{-1} \operatorname{sign}(\beta_1^*)$$

- Conditions
 - Mutual incoherence: $|C_{21}C_{11}^{-1}| < 1$. Minimum signal: $|\beta_1^*| > \lambda C_{11}^{-1}$

- Mutual incoherence: $|C_{21}C_{11}^{-1}| < 1$.
- Recall that

$$C_{12} = [\mathbf{X}^{(1)}]^T [\mathbf{X}^{(2)}] = \sum_i x_i^{(1)} x_i^{(2)}$$

• When *n* is large

$$\frac{1}{n}C_{12} \to E\left([X^{(1)}]^T[X^{(2)}]\right) = Cov(X^{(1)}, X^{(2)})$$

since $E[X^{(1)}] = E[X^{(2)}] = 0.$

∃ >

- Mutual incoherence: $|C_{21}C_{11}^{-1}| < 1$. The condition roughly means that the covariance between the variables $X^{(1)}$ and $X^{(2)}$ are less than the variance of $X^{(1)}$
- Minimum signal: $|\beta_1^*| > \lambda C_{11}^{-1}$ Since

$$\frac{1}{n}C_{11} \to Var(X^{(1)}),$$

this means that when $n \to \infty$, we needs

$$\frac{\lambda_n}{n} \to 0$$

$$\begin{split} \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 \\ \text{subject to } \sum_{j=1}^p |\beta^{(j)}| \leq s \end{split}$$

Lasso: alternative form

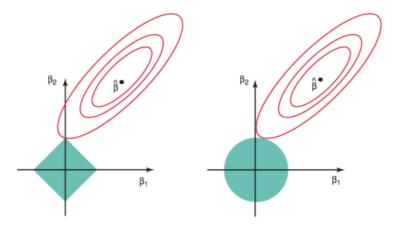
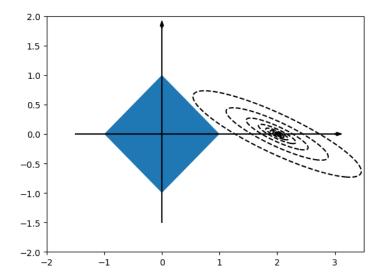


FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

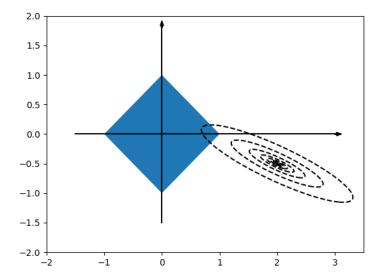
同 ト イ ヨ ト イ ヨ ト

When the lasso fails



Mathematical techniques in data science

When the lasso fails



200

Mathematical techniques in data science

In principle, we want two conditions:

•
$$sign(\beta_1^*) = sign(\beta_1^* + \Delta)$$

where
$$\Delta = C_{11}^{-1}([\mathbf{X}^{(1)}]^T \epsilon - \lambda sign(\beta_1^*)))$$

• $| ilde{z}_2| < 1$ where

$$ilde{z}_2 = rac{1}{\lambda} [\mathbf{X}^{(2)}]^{ au} (\mathbf{X}^{(1)} \Delta + \epsilon)^{-1}$$

• We want an upper bound on

$$[\mathbf{X}^{(1)}]^{\mathcal{T}} \epsilon$$
 and $[\mathbf{X}^{(2)}]^{\mathcal{T}} \epsilon$

向 ト イヨ ト イヨ ト

э

In principle, we want two conditions:

- $[\mathbf{X}^{(1)}]^T \epsilon$ is a Gaussian random variable with mean 0 and standard deviation $\sigma \|\mathbf{X}^{(1)}\|_2$
- Thus, there exists a universal constant C such that

$$|[\mathbf{X}^{(1)}]^{\mathsf{T}}\epsilon| \leq C\sigma \sqrt{nVar(X^{(1)})\log\left(rac{1}{\delta}
ight)}$$

with probability at least $1-\delta$

General settings

Without loss of generality, assume $\beta^n = (\beta_1^n, ..., \beta_q^n, \beta_{q+1}^n, ..., \beta_p^n)^T$ where $\beta_j^n \neq 0$ for j = 1, ..., qand $\beta_j^n = 0$ for j = q + 1, ..., p. Let $\beta_{(1)}^n = (\beta_1^n, ..., \beta_q^n)^T$ and $\beta_{(2)}^n = (\beta_{q+1}^n, ..., \beta_p^n)$. Now write $\mathbf{X}_n(1)$ and $\mathbf{X}_n(2)$ as the first q and last p - q columns of \mathbf{X}_n respectively and let $C^n = \frac{1}{n} \mathbf{X}_n^T \mathbf{X}_n$. By setting $C_{11}^n = \frac{1}{n} \mathbf{X}_n(1)' \mathbf{X}_n(1), C_{22}^n = \frac{1}{n} \mathbf{X}_n(2)' \mathbf{X}_n(2), C_{12}^n = \frac{1}{n} \mathbf{X}_n(1)' \mathbf{X}_n(2)$ and $C_{21}^n = \frac{1}{n} \mathbf{X}_n(2)' \mathbf{X}_n(1)$. C^n can then be expressed in a block-wise form as follows:

$$C^n = \left(\begin{array}{cc} C_{11}^n & C_{12}^n \\ C_{21}^n & C_{22}^n \end{array} \right).$$

Assuming C_{11}^n is invertible, we define the following Irrepresentable Conditions Strong Irrepresentable Condition. There exists a positive constant vector η

$$|C_{21}^n(C_{11}^n)^{-1}\mathrm{sign}(\beta_{(1)}^n)| \le 1-\eta,$$

where 1 is a p-q by 1 vector of 1's and the inequality holds element-wise. Weak Irrepresentable Condition.

 $|C_{21}^n(C_{11}^n)^{-1}\operatorname{sign}(\beta_{(1)}^n)| < 1,$

・ 同 ト ・ ヨ ト ・ ヨ ト …