
Mathematical techniques in data science

Lecture 14: Model consistency of the lasso estimator

March 20th, 2019

Mathematical techniques in data science



Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural network
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bootstrap + Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Model selection consistency lasso

Note: Model consistency of lasso

Further readings:

Zhao and Yu (2006)
Wainright (2009)
Sparsity, the lasso, and friends (Ryan Tibshirani)
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Settings

We start with the simple linear regression problem

Y = β1X
(1) + β2X

(2) + ε, ε ∼ N (0, σ2)

Sparsity: assume that the data is generated using the “true”
vector of parameters β∗ = (β∗1 , 0).

We assume that E [X (1)] = E [X (2)] = 0.
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Matrix form

we observe a dataset (x1, y1), (x2, y2), . . . , (xn, yn)

use the same notations as in the previous lectures

Y =


y1
y2
. . .
yn

 X =

x (1)1 x
(2)
1

. . . . . .

x
(1)
n x

(2)
n


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Goal

The lasso estimator solves the optimization problem

β̂ = min
β

1

2
‖Y− Xβ‖22 + λ(|β1|+ |β2|).

We want to investigate the conditions under which we can verify
that

sign(β̂1) = sign(β∗1) and β̂2 = 0
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Properties of lasso solutions

Theorem

(a) A vector β̂ solve the lasso program if and only if there exists a
ẑ ∈ ∂‖β̂‖ such that

XT (Y− Xβ̂)− λẑ = 0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual
feasibility condition

|ẑ2| < 1

then any lasso solution β̃ satisfies β̃2 = 0.

(c) Under the condition of part (b), if X(1) 6= 0, then β̂ is the
unique lasso solution.
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The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a
pair of (β̃, z̃) according to the following steps:

First, we obtain β̃1 by solving the restricted lasso problem

β̃1 = min
β=(β1,0)

1

2
‖Y− Xβ‖22 + λ(|β1|).

Choose a subgradient z̃1 ∈ R for the `1-norm evaluated at β̃1

Second, we solve for a vector z̃2 satisfying equation (0.1), and
check whether or not the dual feasibility condition |z̃2| < 1 is
satisfied

Third, we check whether the sign consistency condition

z̃1 = sign(β∗1)

is satisfied.
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A more detailed computation

We note that the matrix form of equation (0.1) can be written as

[X(1)]T (Y− X(1)β1 − X(2)β2)− λẑ1 = 0

[X(2)]T (Y− X(1)β1 − X(2)β2)− λẑ2 = 0

To simplify the notation, we denote

Cij = [X(i)]T [X(j)]
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Step 1

we find β̃1 and z̃1 that satisfies

[X(1)]T (Y− X(1)β̃1)− λz̃1 = 0

Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

z̃1 = sign(β∗1) and β̃1 = C−1
11 ([X(1)]TY− λsign(β∗1)).

This is acceptable as long as z̃1 ∈ ∂|β̃1|. That is,

sign(β̃1) = sign(β∗1)
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Step 2

Step 2:
[X(2)]T (Y− X(1)β̃1)− λz̃2 = 0

Choose

z̃2 =
1

λ
[X(2)]T (Y− X(1)β̃1).

We want |z̃2| < 1.
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Conditions

In principle, we want two conditions:

sign(β∗1) = sign(β∗1 + ∆)
where

∆ = C−1
11 ([X(1)]T ε− λsign(β∗1)))

|z̃2| < 1 where

z̃2 =
1

λ
[X(2)]T (X(1)∆ + ε)
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Zero-noise setting

we assume that the observations are collected with no noise
(ε = 0).

Then
∆ = −C−1

11 λsign(β∗1)

and

z̃2 =
−1

λ
C21∆ = C21C

−1
11 sign(β∗1)

Conditions

Mutual incoherence: |C21C
−1
11 | < 1.

Minimum signal: |β∗
1 | > λC−1

11
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Co-linearity

Mutual incoherence: |C21C
−1
11 | < 1.

Recall that

C12 = [X(1)]T [X(2)] =
∑
i

x
(1)
i x

(2)
i

When n is large

1

n
C12 → E

(
[X (1)]T [X (2)]

)
= Cov(X (1),X (2))

since E [X (1)] = E [X (2)] = 0.
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Conditions

Mutual incoherence: |C21C
−1
11 | < 1.

The condition roughly means that the covariance between the
variables X (1) and X (2) are less than the variance of X (1)

Minimum signal: |β∗1 | > λC−1
11

Since
1

n
C11 → Var(X (1)),

this means that when n→∞, we needs

λn
n
→ 0
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

min
β
‖Y− Xβ‖22

subject to

p∑
j=1

|β(j)| ≤ s
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Lasso: alternative form
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When the lasso fails
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When the lasso fails
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Noisy setting

In principle, we want two conditions:

sign(β∗1) = sign(β∗1 + ∆)
where

∆ = C−1
11 ([X(1)]T ε− λsign(β∗1)))

|z̃2| < 1 where

z̃2 =
1

λ
[X(2)]T (X(1)∆ + ε)

We want an upper bound on

[X(1)]T ε and[X(2)]T ε
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Properties of Gaussian random variables

In principle, we want two conditions:

[X(1)]T ε is a Gaussian random variable with mean 0 and
standard deviation σ‖X(1)‖2
Thus, there exists a universal constant C such that

|[X(1)]T ε| ≤ Cσ

√
nVar(X (1)) log

(
1

δ

)
with probability at least 1− δ
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General settings
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