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Lecture 14: Model consistency of the lasso estimator
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Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural network

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bootstrap + Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Model selection consistency lasso

@ Note: Model consistency of lasso
@ Further readings:

e Zhao and Yu (2006)
e Wainright (2009)
o Sparsity, the lasso, and friends (Ryan Tibshirani)
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@ We start with the simple linear regression problem
Y =5 XD 4 8X3 f e e~ N(0,02)

@ Sparsity: assume that the data is generated using the “true”
vector of parameters 3* = (31, 0).

o We assume that E[X(] = E[X®)] = 0.

Mathematical techniques in data science



@ we observe a dataset (x1,y1), (x2,¥2), .-, (Xn, ¥n)

@ use the same notations as in the previous lectures

" FORNC)
Y= | X=1.. ..
@)
Y X5 Xp
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The lasso estimator solves the optimization problem
~ o1
B = min SIIY = XB[13 + A(I81] + 2.

We want to investigate the conditions under which we can verify
that

sign(f1) = sign(B7) and B =0

Mathematical techniques in data science



Properties of lasso solutions

(a) A vector B solve the lasso program if and only if there exists a
2 € 9||B|| such that

XT(Y-=XB)—X2=0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual
feasibility condition
’22| <1

then any lasso solution [3 satisfies 3 = 0.

(c) Under the condition of part (b), if X!) £ 0, then j3 is the
unique lasso solution.
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The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a
pair of (3, Z) according to the following steps:

o First, we obtain j3; by solving the restricted lasso problem

~ 1
/1= min =

B=(51.0) 2 1Y = X513 + A(|51])-

Choose a subgradient Z; € R for the ¢1-norm evaluated at Bl

@ Second, we solve for a vector Z, satisfying equation (0.1), and
check whether or not the dual feasibility condition |Z;| < 1 is
satisfied

@ Third, we check whether the sign consistency condition
% = sign(py)
is satisfied.
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A more detailed computation

We note that the matrix form of equation (0.1) can be written as
XY = XWB — XP)B) — A5 =0

XN (Y =XV, —X@By) — Az, =0

To simplify the notation, we denote

Cj = (X)X )

Mathematical techniques in data science



e we find Bl and Z; that satisfies
XDy —xWj3) —xz =0

@ Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

% =sign(87) and  f1 = CH(IXM]TY — Asign(57)).
This is acceptable as long as Z; € 8|Bl|. That is,

sign(f1) = sign(57)
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@ Step 2: y
X1y —=xW3) - x5 =0
@ Choose 1
% = X[x(2)]T(Y — XW3E).

We want |2;| < 1.
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In principle, we want two conditions:

e sign(B7) = sign(B; + A)
where
A = CH(IXW)Te - Asign(B87)))

@ |Z| < 1 where

%y = %[X(Z)]T(X(l)A +¢)
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Zero-noise setting

@ we assume that the observations are collected with no noise

(e =0).
@ Then
A = —Ci;" Asign(7)
and 1
Zy = TC21A = C21 CﬂISlgn(BT)

@ Conditions

o Mutual incoherence: |Gy Cji*| < 1.
o Minimum signal: 85| > A\C;;*
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Co-linearity

@ Mutual incoherence: |C21C1_11\ < 1.
@ Recall that

Gz = XP]TX] = 3 D

@ When n is large
%cu = E (IXO)T[XO)) = Cov(x®, X2)

since E[XM] = E[X®)] =o0.
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@ Mutual incoherence: |C21C1_11\ < 1.
The condition roughly means that the covariance between the
variables X(1) and X(®) are less than the variance of X(1)
o Minimum signal: |3}| > AC7*
Since
%Cll — Var(X(l)),

this means that when n — oo, we needs

ﬁao
n
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

min ¥ — X33

p
subject to Z 18Y)| <'s
j=1
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Lasso: alternative form

By

By

FIGURE 6.7. Confours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |G| + |82| < s and 37 + 8% < s, while the red ellipses are the contours of

the RSS.
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When the lasso fails
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When the lasso fails
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In principle, we want two conditions:

e sign(B7) = sign(B; + A)
where
A = CH(IXW] e - Asign(B7)))

o |Z| < 1 where
%y = %[X(Z)]T(X(l)A +¢)

@ We want an upper bound on

[XM]Te  and[X?)]Te
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Properties of Gaussian random variables

In principle, we want two conditions:

° [X(l)]Te is a Gaussian random variable with mean 0 and
standard deviation O'||X(1)||2

@ Thus, there exists a universal constant C such that

XM Te| < Ca\/ nVar(X(1)) log <2>

with probability at least 1 — §
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General settings

Without loss of generality, assume " = ( ’l‘,ﬁ; 10 By)T where B #0 for j=1,.,9
and B =0 for j = g+1,..,p. Let Bfy, = (B}-..B})" and By = (B 15+ Bp). Now write X5(1)
and Xp(2) as the first ¢ and last p — g columns of X, respectively and let C" = iX,,TX,,. By setting
Cl = 1%, (1) Xn(1), €% = 1Xn(2)Xa(2), C%, = 1Xu(1)'Xn(2) and C2, = 1X,(2)'Xn(1). C" can
then be expressed in a block-wise form as follows:

cl, cr
C" = ( 1n 12 ) )
G
Assuming CY, is invertible, we define the following Irrepresentable Conditions
Strong Irrepresentable Condition. There exists a positive constant vector

|C3 (CTy) ' sign(Bfy))| < 1—m,
(1)

where 1 isa p— g by 1 vector of 1’s and the inequality holds element-wise.
‘Weak Irrepresentable Condition.

|Cgl(cl111)71513n(ﬁ?1))| <1,
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