Mathematical techniques in data science

Lecture 15: Computing the lasso estimator

March 22th, 2019

Schedule

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5, 6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods $+$ Random forest
8	
9	Neural network
12	PCA o Manifold learning
11	Clustering: K-means $ o$ Spectral Clustering
10	Bootstrap + Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

Settings

Linear model

$$Y = \beta^{(0)} + \beta^{(1)}X^{(1)} + \beta^{(2)}X^{(2)} + \dots + \beta^{(p)}X^{(p)} + \epsilon$$

• $\mathbf{Y} \in \mathbb{R}^{n \times 1}$, $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & | & | & \dots & | \\ \dots & x^{(1)} & x^{(2)} & \dots & x^{(p)} \\ 1 & | & | & \dots & | \end{bmatrix}$$

where $\left(x_j^{(i)}\right)_{i=1}^n$ are the observations of $X^{(i)}$.

Lasso

• The Lasso (Least Absolute Shrinkage and Selection Operator)

$$\hat{\beta}^{\textit{lasso}} = \min_{\beta} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{i=1}^p |\beta^{(j)}|$$

- lasso is often used in high dimensions
- cross-validation involves solving many lasso problems
- how can we compute the lasso estimator efficiently?

Coordinate descent

Objective: Minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$\begin{split} x_1^{(k+1)} &= \operatorname*{argmin}_x f(x, x_2^{(k)}, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_2^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_3^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \dots, x_p^{(k)}) \\ &\vdots \\ x_p^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, \dots, x_{p-1}^{(k+1)}, x). \end{split}$$

Coordinate descent

Coordinate descent: may not converge

Coordinate descent

- in general, may not converge to the optimum
- works for lasso

Theorem

Suppose

$$f(x_1,\ldots,x_p) = f_0(x_1,\ldots,x_p) + \sum_{i=1}^p f_i(x_i)$$

where

- f₀ is convex and twice differentiable
- f_i is convex $(i = 1, \ldots, p)$
- f is continuous and the set $X_0 = \{x : f(x) \le f(x^0)\}$ is compact

the the coordinate descent starting at x^0 converges to the optimum

Lasso

• The Lasso (Least Absolute Shrinkage and Selection Operator)

$$\hat{\beta}^{\textit{lasso}} = \min_{\beta} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{i=1}^p |\beta^{(j)}|$$

- lasso is often used in high dimensions
- cross-validation involves solving many lasso problems
- how can we compute the lasso estimator efficiently?

Taking derivative: the differentiable part

Minimize the residual sum of squares

$$L(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta^{(0)} - \beta^{(1)} x_i^{(1)} - \beta^{(2)} x_i^{(2)} - \dots - \beta^{(p)} x_i^{(p)})^2$$

Taking derivative

$$\frac{\partial P_1}{\partial \beta^{(j)}}(\beta) = \sum_{i=1}^n (x_i \beta - y_i) x_i^{(j)}$$

$$= [x^{(j)}]^T \left(\beta^{(0)} + \beta^{(1)} x_i^{(1)} + \beta^{(2)} x_i^{(2)} + \dots + \beta^{(p)} x_i^{(p)} - y_i \right)$$

Taking derivative: the non-differentiable part

$$\frac{\partial P_2}{\partial \beta^{(j)}}(\beta) = \begin{cases} 1 & \text{if } \beta^{(j)} > 0\\ s \in [-1, 1] & \text{if } \beta^{(j)} = 0\\ -1 & \text{if } \beta^{(j)} < 0 \end{cases}$$

Critical point

$$\frac{\partial P}{\partial \beta^{(j)}}(\beta) = 0$$

Case 1: If $\beta^{(j)} > 0$ and

$$[x^{(j)}]^T \left(\beta^{(0)} + \beta^{(1)}x_i^{(1)} + \beta^{(2)}x_i^{(2)} + \ldots + \beta^{(p)}x_i^{(p)} - y_i\right) + \alpha = 0$$

This is equivalent to

$$\beta^{(j)} = \frac{[x^{(j)}]^T (y_i - [X^{(-j)}]^T [\beta^{(-j)}]) - \alpha}{[x^{(j)}]^T [x^{(j)}]}$$
$$= A^* - \frac{\alpha}{\|x^{(j)}\|^2}$$

Critical point

$$\frac{\partial P}{\partial \beta^{(j)}}(\beta) = 0$$

Case 2: If $\beta^{(j)} < 0$ and

$$[x^{(j)}]^T \left(y_i - \beta^{(0)} - \beta^{(1)} x_i^{(1)} - \beta^{(2)} x_i^{(2)} - \dots - \beta^{(p)} x_i^{(p)} \right) - \alpha = 0$$

This is equivalent to

$$\beta^{(j)} = \frac{[x^{(j)}]^T (y_i - [X^{(-j)}]^T [\beta^{(-j)}]) + \alpha}{[x^{(j)}]^T [x^{(j)}]}$$
$$= A^* + \frac{\alpha}{\|x^{(j)}\|^2}$$

Critical point

Thus

$$\beta_*^{(j)} = \begin{cases} A^* - \frac{\alpha}{\|x^{(j)}\|^2} & \text{if } A^* - \frac{\alpha}{\|x^{(j)}\|^2} > 0\\ 0 & \text{otherwise}\\ A^* + \frac{\alpha}{\|x^{(j)}\|^2} & \text{if } A^* + \frac{\alpha}{\|x^{(j)}\|^2} < 0 \end{cases}$$

Coordinate descent: may not converge

Hard-thresholding:

$$\eta^H_\epsilon(x) = x \mathbf{1}_{|x| > \epsilon}.$$

$$\eta_{\epsilon}^{S}(x) = \operatorname{sgn}(x)(|x| - \epsilon)_{+}$$

Note: soft-thresholding shrinks the value until it hits zero (and then leaves it at zero).

$$\eta^S_\epsilon(x) = egin{cases} x - \epsilon & \text{if } x > \epsilon \\ x + \epsilon & \text{if } x < -\epsilon \\ 0 & \text{if } -\epsilon \leq x \leq \epsilon \end{cases}.$$

