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Lecture 15: Computing the lasso estimator
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Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural network

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bootstrap + Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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@ Linear model
y = 80 4 pgMx® 4 g xR 4 g x(P) 4 ¢

= Rnxl7 X e Rnx(p-{-l)

7 1 |
Y = 2 X=1|... xO x@ = x(p)
Yn
where (xj(i))n are the observations of X(7).
j=1
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Lasso

@ The Lasso (Least Absolute Shrinkage and Selection Operator)

s 1 P
BEs=e = min SIY = XBJ5+ A 18]
j=1

lasso is often used in high dimensions

cross-validation involves solving many lasso problems

how can we compute the lasso estimator efficiently?
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Coordinate descent

Objective: Minimize a function f : R™® — R.
Strategy: Minimize each coordinate separately while cycling
through the coordinates.

2{"*) = argmin f (2,257, 2f, ..., 2)
(k+l) _ a.rgmlnf(:n(kﬂ) r mgk), ..,m;k))
(k+1) a.rg'mlnf(:r:(kﬂ) (k+1) xflk)’ o ,:rg“))

(k+1)  (k+1) (k+1)

k+1 .
ml(,*):a.rg;nmf(:r:l ) seeesTp 1 , ).
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Coordinate descent

fla,y) =5z — 6y + 5y°

1.0

-05

Mathematical techniques in data science



Coordinate descent: may not converge

fo.y) =z +yl+3ly— 2]
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Coordinate descent

@ in general, may not converge to the optimum

@ works for lasso

Suppose
P
f(x1,...,%xp) = fo(x1,...,xp) + Z fi(x;)
i=1
where

e fy is convex and twice differentiable
o fiisconvex (i=1,...,p)

o f is continuous and the set Xo = {x : f(x) < f(x°)} is compact

the the coordinate descent starting at x° converges to the optimum
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Lasso

@ The Lasso (Least Absolute Shrinkage and Selection Operator)

s 1 P
BEs=e = min SIY = XBJ5+ A 18]
j=1

lasso is often used in high dimensions

cross-validation involves solving many lasso problems

how can we compute the lasso estimator efficiently?
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Taking derivative: the differentiable part

@ Minimize the residual sum of squares

n

1
L(B) == 5D (i~ F(x)°
i=1
1 ¢ .
=3 Z (Yi — O _ B(l)xl_(l) _ 5(2)Xi(2) . _ 5(p)xi(p)>
i=1

@ Taking derivative

oP:

85(1) (6) Z (Xfﬁ - yi)Xi(j)

i=1

— kU7 (5@) +BXD 4 g0L@ |y gl (P y,.)

Mathematical techniques in data science



Taking derivative: the non-differentiable part

op 1 if gU) >0
W@(m: se[-1,1] if g0=0
-1 if W) <o
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Critical point

559 =0

Case 1: If 8U) > 0 and

[XU)]T< ) 4+ 80X 4 g2) (2)+...+B(p)xi(p)—y,->+a20
This is equivalent to

500 WO (= XTI -
<O R0]

X012
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Critical point

=0
557 =
Case 2: If 8U) < 0 and
T (i = B0 = 80D = gD — = 5P} — o =0
This is equivalent to

500 WO (i = XCITI5C9)) +
<O R0]

Ix02

= A"+
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Critical point

Thus

A= o A = G > 0

0 otherwise

* H * o
A"+ HX(?)HQ if A* + o < 0

9 _
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Coordinate descent: may not converge

Hard-thresholding: Soft-thresholding:
Hir) = 21 S(p) = _
7 (%) = 1iz)>e. e (z) = sgn(z)(|z| — €)+
Hard-thresholding . Soft-thresholding
/’/
P v
e yd
yd
o - © //—/
» ) //
S 1
/ .
e @

Note: soft-thresholding shrinks the value until it hits zero (and then
leaves it at zero).
z—e ifz>e
ne(z)=qz+e ifz<—e
0 if —e<z<e
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