Mathematical techniques in data science

Lecture 15: Computing the lasso estimator
March 22th, 2019

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5,6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural network
12	PCA \rightarrow Manifold learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bootstrap + Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

Settings

- Linear model

$$
Y=\beta^{(0)}+\beta^{(1)} X^{(1)}+\beta^{(2)} X^{(2)}+\ldots \beta^{(p)} X^{(p)}+\epsilon
$$

- $\mathbf{Y} \in \mathbb{R}^{n \times 1}, \quad \mathbf{X} \in \mathbb{R}^{n \times(p+1)}$

$$
\mathbf{Y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & \mid & \mid & \ldots & \mid \\
\ldots & x^{(1)} & x^{(2)} & \ldots & x^{(p)} \\
1 & \mid & \mid & \ldots & \mid
\end{array}\right]
$$

where $\left(x_{j}^{(i)}\right)_{j=1}^{n}$ are the observations of $X^{(i)}$.

- The Lasso (Least Absolute Shrinkage and Selection Operator)

$$
\hat{\beta}^{\text {lasso }}=\min _{\beta} \frac{1}{2}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left|\beta^{(j)}\right|
$$

- lasso is often used in high dimensions
- cross-validation involves solving many lasso problems
- how can we compute the lasso estimator efficiently?

Coordinate descent

Objective: Minimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$
\begin{aligned}
x_{1}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x, x_{2}^{(k)}, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{2}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x, x_{3}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{3}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, x, x_{4}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
& \vdots \\
x_{p}^{(k+1)} & =\underset{x}{\operatorname{argmin}} f\left(x_{1}^{(k+1)}, x_{2}^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x\right)
\end{aligned}
$$

Coordinate descent

Coordinate descent: may not converge

Coordinate descent

- in general, may not converge to the optimum
- works for lasso

Theorem

Suppose

$$
f\left(x_{1}, \ldots, x_{p}\right)=f_{0}\left(x_{1}, \ldots, x_{p}\right)+\sum_{i=1}^{p} f_{i}\left(x_{i}\right)
$$

where

- f_{0} is convex and twice differentiable
- f_{i} is convex $(i=1, \ldots, p)$
- f is continuous and the set $X_{0}=\left\{x: f(x) \leq f\left(x^{0}\right)\right\}$ is compact the the coordinate descent starting at x^{0} converges to the optimum
- The Lasso (Least Absolute Shrinkage and Selection Operator)

$$
\hat{\beta}^{\text {lasso }}=\min _{\beta} \frac{1}{2}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left|\beta^{(j)}\right|
$$

- lasso is often used in high dimensions
- cross-validation involves solving many lasso problems
- how can we compute the lasso estimator efficiently?
- Minimize the residual sum of squares

$$
\begin{aligned}
L(\beta)= & =\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\beta^{(0)}-\beta^{(1)} x_{i}^{(1)}-\beta^{(2)} x_{i}^{(2)}-\ldots-\beta^{(p)} x_{i}^{(p)}\right)^{2}
\end{aligned}
$$

- Taking derivative

$$
\begin{aligned}
\frac{\partial P_{1}}{\partial \beta^{(j)}}(\beta) & =\sum_{i=1}^{n}\left(x_{i} \beta-y_{i}\right) x_{i}^{(j)} \\
& =\left[x^{(j)}\right]^{T}\left(\beta^{(0)}+\beta^{(1)} x_{i}^{(1)}+\beta^{(2)} x_{i}^{(2)}+\ldots+\beta^{(p)} x_{i}^{(p)}-y_{i}\right)
\end{aligned}
$$

Taking derivative: the non-differentiable part

$$
\frac{\partial P_{2}}{\partial \beta^{(j)}}(\beta)=\left\{\begin{array}{l}
1 \\
\text { if }
\end{array} \beta^{(j)}>0, \quad \begin{array}{lll}
s \in[-1,1] \quad \text { if } \quad \beta^{(j)}=0 \\
-1 & \text { if } \quad \beta^{(j)}<0
\end{array}\right.
$$

Critical point

$$
\frac{\partial P}{\partial \beta^{(j)}}(\beta)=0
$$

Case 1: If $\beta^{(j)}>0$ and

$$
\left[x^{(j)}\right]^{T}\left(\beta^{(0)}+\beta^{(1)} x_{i}^{(1)}+\beta^{(2)} x_{i}^{(2)}+\ldots+\beta^{(p)} x_{i}^{(p)}-y_{i}\right)+\alpha=0
$$

This is equivalent to

$$
\begin{aligned}
\beta^{(j)} & =\frac{\left[x^{(j)}\right]^{T}\left(y_{i}-\left[x^{(-j)}\right]^{T}\left[\beta^{(-j)}\right]\right)-\alpha}{\left[x^{(j)}\right]^{T}\left[x^{(j)}\right]} \\
& =A^{*}-\frac{\alpha}{\left\|x^{(j)}\right\|^{2}}
\end{aligned}
$$

Critical point

$$
\frac{\partial P}{\partial \beta^{(j)}}(\beta)=0
$$

Case 2: If $\beta^{(j)}<0$ and

$$
\left[x^{(j)}\right]^{T}\left(y_{i}-\beta^{(0)}-\beta^{(1)} x_{i}^{(1)}-\beta^{(2)} x_{i}^{(2)}-\ldots-\beta^{(p)} x_{i}^{(p)}\right)-\alpha=0
$$

This is equivalent to

$$
\begin{aligned}
\beta^{(j)} & =\frac{\left[x^{(j)}\right]^{T}\left(y_{i}-\left[x^{(-j)}\right]^{T}\left[\beta^{(-j)}\right]\right)+\alpha}{\left[x^{(j)}\right]^{T}\left[x^{(j)}\right]} \\
& =A^{*}+\frac{\alpha}{\left\|x^{(j)}\right\|^{2}}
\end{aligned}
$$

Critical point

Thus

Coordinate descent: may not converge

Hard-thresholding:

$$
\eta_{\epsilon}^{H}(x)=x \mathbf{1}_{|x|>\epsilon}
$$

Hard-thresholding

Soft-thresholding:

$\eta_{\epsilon}^{S}(x)=\operatorname{sgn}(x)(|x|-\epsilon)_{+}$
Soft-thresholding

Note: soft-thresholding shrinks the value until it hits zero (and then leaves it at zero).

$$
\eta_{\epsilon}^{S}(x)= \begin{cases}x-\epsilon & \text { if } x>\epsilon \\ x+\epsilon & \text { if } x<-\epsilon \\ 0 & \text { if }-\epsilon \leq x \leq \epsilon\end{cases}
$$

