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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural networks
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Feed-forward neural networks

Structure:

Graphical representation
Activation functions
Loss functions

Training:

Stochastic gradient descent
Back-propagation
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Feed-forward neural networks
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Logistic neuron
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Feed-forward neural networks
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Feed-forward neural networks
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Activation functions
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Activation functions

If we do not apply an activation function, then the output signal
would simply be a simple linear function of the input signals
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Activation functions
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Hyperbolic tangent

Issue: vanishing gradient problem
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Rectified linear unit (ReLU)

Advantages: model sparsity, cheap to compute, partially
address the vanishing gradient problem

Issue: Dying ReLU
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Leaky relu
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Exponential Linear Unit (ELU)
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Module: tf.keras.activations
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Loss functions
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Supervised learning: standard setting

Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn)
sampled (independently and identically) from an unknown
distribution PX ,Y

The function h is an element of some space of possible
functions H, usually called the hypothesis space.

In order to measure how well a function fits the training data,
a loss function

L : Y × Y → R≥0

is defined

For training example (xi , yi ) and a hypothesis h, the loss of
predicting the value h(xi ) is L(yi , h(xi ))
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Regression

For regression

L(w , x , y) = (y − h(w , x))2, or, L(w , x , y) = |y − h(w , x)|
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Classification: cross-entropy

Note: Here yo,c is the 0-1 label and po,c is the predicted
probability for the observation o is of class c , respectively
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Module: tf.keras.losses

Mathematical techniques in data science



Stochastic gradient descent
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Gradient descent
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Stochastic gradient descent

Recall that the empirical risk function has the form

L(w) =
1

n

N∑
i=1

L(w , xi , yi )

Mini-batch stochastic gradient descent

randomly shuffle examples in the training set, divide them into
k mini-batches of data of size m
for each batch Ii (i=1, . . . , k), approximate the empirical risk
by

L̂(w) =
1

m

∑
j∈Ii

L(w , xj , yj)

and update w by gradient descent
Repeat until an approximate minimum is obtained
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Stochastic gradient descent (SGD)
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Stochastic gradient descent: teminology

Mini-batch stochastic gradient descent

randomly shuffle examples in the training set, divide them into
k mini-batches of data of size m
for each batch Ii (i=1, . . . , k), approximate the empirical risk
by

L̂(w) =
1

m

∑
j∈Ii

L(w , xj , yj)

and update w by gradient descent
Repeat these steps M times

Terminology:

m: batch-size
k: iteration
M: number of epochs
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Stochastic gradient descent

Gradient descent converges to the local minimum, and the
fluctuation is small

SGD’s fluctuation is large, but enables jumping to new/better
local minima
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Related concept: Simulated annealing
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Automatic diffierentiation
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Stochastic gradient descent

The most computationally heavy part in the training of a
neural net is to compute

∂L
∂wi ,j

Numerical differentiation is not realistic, and symbolic
differentiation is impossible
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Automatic diffierentiation

Assume that
y = f (g(h(x)))

Denote x = u0, h(u0) = u1, g(u1) = u2, f (u2) = u3 = y , then

dy

dui
=

dy

dui+1

dui+1

dui
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Automatic differentiation
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Feed-forward neural networks
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Back-propagation

Advantage: The cost to compute the partial derivatives with
respect to all parameters are just twice the cost of a forward
evaluations

Drawback: The functions used to describe the network
(activation functions and loss functions) needs to belong to
the class of functions supported by the computational platform
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