Mathematical techniques in data science

Lecture 21: Neural networks

April 12th, 2019

Mathematical techniques in data science

-∢ ≣ ▶

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5,6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural networks
12	$PCA \to Manifold$ learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bayesian methods $+$ UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

æ

▶ ▲ 문 ▶ ▲ 문 ▶

• Structure:

- Graphical representation
- Activation functions
- Loss functions
- Training:
 - Stochastic gradient descent
 - Back-propagation

- Hypothesis space: the space of possible functions that the model describes
 For feed-forward neural nets, we need to specify
 - Network's graphical structure: number of layers, number of
 - nodes in each layers, connections between the layers
 - Activation function used in each layers
- In order to measure how well a function fits the training data, a *loss function* needs to be defined

Graphical representation

э

Activation functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Module: tf.keras.activations

Functions

```
deserialize(...)
```

```
elu(...) : Exponential linear unit.
```

```
exponential(...)
```

get(...)

hard_sigmoid(...) : Hard sigmoid activation function.

linear(...)

```
relu(...) : Rectified Linear Unit.
```

selu(...) : Scaled Exponential Linear Unit (SELU).

serialize(...)

sigmoid(...)

softmax(...) : Softmax activation function.

softplus(...) : Softplus activation function.

- For regression: mean squared error, mean absolute error
- For classification: cross-entropy

Classes 🖘

 \uparrow

э

class BinaryCrossentropy : Computes the binary cross entropy loss between the labels and predictions.

class CategoricalCrossentropy : Computes categorical cross entropy loss between the y_true and y_pred.

class MeanAbsoluteError : Computes the mean of absolute difference between labels and predictions.

class MeanAbsolutePercentageError : Computes the mean absolute percentage error between y_true and y_pred.

class MeanSquaredError: Computes the mean of squares of errors between labels and predictions.

class MeanSquaredLogarithmicError: Computes the mean squared logarithmic error between y_true and y_pred.

くロ と く 同 と く ヨ と 一

Training of feed-forward neural nets

- Stochastic gradient descent
- Back-propagation

Stochastic gradient descent

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
 - for each batch I_i (i=1, ..., k), approximate the empirical risk by

$$\hat{\mathcal{L}}(w) = \frac{1}{m} \sum_{j \in I_i} L(w, x_j, y_j)$$

and update w by gradient descent

- Repeat these steps *M* times
- Terminology:
 - m: batch-size
 - k: iteration
 - M: number of epochs

Stochastic gradient descent (SGD)

Mathematical techniques in data science

• The most computationally heavy part in the training of a neural net is to compute

$$\frac{\partial \mathcal{L}}{\partial w_{i,j}}$$

• Numerical differentiation is not realistic, and symbolic differentiation is impossible

Assume that

$$y=f(g(h(x)))$$

• Denote $x = u_0$, $h(u_0) = u_1$, $g(u_1) = u_2$, $f(u_2) = u_3 = y$, then

$$\frac{dy}{du_i} = \frac{dy}{du_{i+1}} \frac{du_{i+1}}{du_i}$$

- To compute the derivatives of y with respect to all the u_i's, we need
 - a forward run: compute the values of the u_i 's, starting from $u_0 = x$
 - a backward run: compute the values of $\frac{dy}{du_i},$ starting from $\frac{dy}{du_3}=1$

Automatic differentiation

Mathematical techniques in data science

3 x 3

Feed-forward neural networks

Mathematical techniques in data science

イロト イヨト イヨト イヨト

э

Computational graph

Mathematical techniques in data science

・ロト ・回ト ・ヨト ・ヨト

æ

- Advantage: The cost to compute the partial derivatives with respect to all parameters are just twice the cost of a forward evaluations
- Drawback: The functions used to describe the network (activation functions and loss functions) needs to belong to the class of functions supported by the computational platform

Setting up with tensorflow.keras

• Using the function Sequential to (sequentially) add the layers

model = tf.keras.models.Sequential(...)

• For each layer, we specify

- the shape of input (for the first hidden layer)
- the shape of output
- the activation function
- For simple feed forward neural net, the only type of layer to use is 'Dense'

• Use model.compile() to specify

- the optimizer
- the loss function
- a metric of accuracy
- Use model.fit() to specify
 - x_{train} and y_{train}
 - number of epochs (default:1)
 - batch size (default: 32)
 - learning rate

Optimizers

Module: tf.keras.optimizers

Contents

Classes

Functions

Defined in tensorflow/_api/v1/keras/optimizers/__init__.py.

Built-in optimizer classes.

Classes

class Adadelta : Adadelta optimizer.

class Adagrad : Adagrad optimizer.

class Adam : Adam optimizer.

class Adamax : Adamax optimizer from Adam paper's Section 7.

class Nadam : Nesterov Adam optimizer.

class Optimizer : Abstract optimizer base class.

class RMSprop : RMSProp optimizer.

class SGD : Stochastic gradient descent optimizer.

Mathematical techniques in data science

≣⇒

Reading: an overview of gradient descent algorithms http://ruder.io/optimizing-gradient-descent/

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

э

• Vanilla gradient descent updates parameters by

$$\theta = \theta - \eta \nabla \hat{J}(\theta)$$

where $\boldsymbol{\theta}$ is the learning rate

- Problems
 - choosing η is difficult
 - $\bullet\,$ same learning rate applies to all parameter updates $\rightarrow\,$ inefficiency
 - on high dimension, not only SGD might be stuck at local minima, it may also be stuck at saddle points
- Ideas
 - use momentum
 - adjust the learning rate

• SGD-momentum

$$egin{aligned} & \mathbf{v}_t = \gamma \mathbf{v}_{t-1} + (1-\gamma)
abla_{ heta} J(heta) \ & heta = heta - \eta \mathbf{v}_t \end{aligned}$$

• Nesterov Accelerated Gradient (NAG)

$$\begin{aligned} \theta^* &= \theta - \eta v_{t-1} \\ v_t &= \gamma v_{t-1} + (1 - \gamma) \nabla_{\theta} J(\theta^*) \\ \theta &= \theta - \eta v_t \end{aligned}$$

▶ ∢ ≣ ▶

3)) B

Dimension-specific learning rate

Adagrad

$$\theta = \theta - \frac{\eta}{\sqrt{S_t + \epsilon}} \nabla \hat{J}(\theta)$$

where

$$S_{t,i} = S_{t-1,i} + (\nabla_i \hat{J}(\theta))^2$$

• RMSProp:

Same idea, but S_t is a decaying average of the gradients

$$S_{t,i} = \gamma S_{t-1,i} + (1-\gamma)(\nabla_i \hat{J}(\theta))^2$$

 \rightarrow similar to the idea of momentum \rightarrow referred to as second order moment