Mathematical techniques in data science

Lecture 22: Principal component analysis (PCA)
April 15th, 2019

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5,6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural networks
12	PCA \rightarrow Manifold learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

The materials of the course can be organized

- By learning settings:
- Standard setting
- Online learning
- Reinforcement learning
- Active learning
- By meta-level techniques:
- Regularization
- Kernel methods
- Boosting
- Bootstrapping
- Bayesian learning

Diagram of a typical supervised learning problem

Supervised learning: learning a function that maps an input to an output based on example input-output pairs

Unsupervised learning

- Unsupervised learning
- learning an unlabelled dataset: we observe a vector of measurements x_{i} but no associated response y_{i}
- searching for indirect hidden structures, patterns or features to analyze the data
- Problems:
- Manifold learning
- Clustering
- Anomoly detection

Manifolds

- high-dimensional data often has a low-rank structure
- Question: how can we discover low dimensional structures in data?

Manifold learning

- learning geometric and topological structures of high-dimensional manifolds
- learning the low-dimensional approximation (or embedding) to visualize the dataset
- learning the mapping from high-dimensional manifold to its low-dimensional embedding

What we will learn

- Principal component analysis
- Multi-dimensional scaling (MDS)
- Locally linear embedding (LLE)
- Spectral embedding
- t-distributed Stochastic Neighbor Embedding (t-SNE)

Principal component analysis

Problem: How can we discover low dimensional structures in data?

- Principal components analysis: construct projections of the data that capture most of the variability in the data.
- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.

PCA

PCA: first component

PCA: second component

We have a random vector X

$$
X=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{p}
\end{array}\right)
$$

with mean 0 and population variance-covariance matrix

$$
\operatorname{var}(X)=\Sigma=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p}^{2}
\end{array}\right)
$$

Consider the linear combinations

$$
\begin{array}{rr}
Y_{1}= & w_{11} X_{1}+w_{12} X_{2}+\cdots+w_{1 p} X_{p} \\
Y_{2}= & w_{21} X_{1}+e_{22} X_{2}+\cdots+w_{2 p} X_{p} \\
& \cdots \\
Y_{p}= & w_{p 1} X_{1}+w_{p 2} X_{2}+\cdots+w_{p p} X_{p}
\end{array}
$$

then

$$
\operatorname{var}\left(Y_{i}\right)=\sum_{k=1}^{p} \sum_{l=1}^{p} w_{i k} w_{i l} \sigma_{k l}=w_{i} \sum w_{i}^{T}
$$

and

$$
\operatorname{cov}\left(Y_{i}, Y_{j}\right)=\sum_{k=1}^{p} \sum_{l=1}^{p} w_{i k} w_{j l} \sigma_{k l}=w_{i} \Sigma w_{j}^{T}
$$

- Let $X \in \mathbb{R}^{n \times p}$ with rows $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- We think of X as n observations of a random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in \mathbb{R}^{p}$
- Suppose each column has mean 0
- We want to find a linear combination

$$
w_{1} X_{1}+w_{2} X_{2}+\ldots+w_{p} X_{p}
$$

with maximum variance.
(Intuition: we look for a direction where the data varies the most.)

- In practice, we don't know the covariance matrix $\Sigma=E\left[X^{\top} X\right]$, and we need to approximate that by

$$
\hat{\Sigma}=\mathbf{X}^{\top} \mathbf{X}
$$

- We want to solve

$$
w^{(1)}=\arg \max _{\|w\|=1} w \hat{\Sigma} w^{T}
$$

- Note that

$$
\sum_{i=1}^{n}\left|\left\langle x_{i}, w\right\rangle\right|^{2}=\left\|\mathbf{X} w^{T}\right\|^{2}=w \mathbf{X}^{T} \mathbf{X} w^{T}=w \hat{\Sigma} w^{T}
$$

- We solve

$$
w^{(1)}=\arg \max _{\|w\|=1} w \hat{\Sigma} w^{\top}
$$

- Known result:

$$
\max _{\|w\|=1} w A w^{T}=\lambda_{\max }
$$

where $\lambda_{\text {max }}$ is the largest eigenvalue of A, and the equality is obtained if w is an eigenvector corresponding to $\lambda_{\text {max }}$

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The Rayleigh quotient is defined by

$$
R(A, x)=\frac{x^{T} A x}{x^{T} x}=\frac{\langle A x, x\rangle}{\langle x, x\rangle}, \quad\left(x \in \mathbb{R}^{p}, x \neq \mathbf{0}_{p \times 1}\right) .
$$

Observations:
(1) If $A x=\lambda x$ with $\|x\|_{2}=1$, then $R(A, x)=\lambda$. Thus,

$$
\sup _{x \neq 0} R(A, x) \geq \lambda_{\max }(A)
$$

(2) Let $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ denote the eigenvalues of A, and let $\left\{v_{1}, \ldots, v_{p}\right\} \subset \mathbb{R}^{p}$ be an orthonormal basis of eigenvectors of A. If $x=\sum_{i=1}^{p} \theta_{i} v_{i}$, then $R(A, x)=\frac{\sum_{i=1}^{p} \lambda_{i} \theta_{i}^{2}}{\sum_{i=1}^{n} \theta_{i}^{2}}$.
It follows that

$$
\sup _{x \neq 0} R(A, x) \leq \lambda_{\max }(A)
$$

Thus, $\sup _{x \neq \mathbf{0}} R(A, x)=\sup _{\|x\|_{2}=1} x^{T} A x=\lambda_{\max }(A)$.

We look for a new linear combination of the Xi's that

- is orthogonal to the first principal component, and
- maximizes the variance.

In other words

$$
w^{(2)}=\arg \max w \hat{\Sigma} w^{\top}
$$

Using a similar argument as before, we have

$$
\hat{\Sigma} w^{(2)}=\lambda_{2} w^{(2)}
$$

where λ_{2} is the second largest eigenvalue

PCA: high-order components

- We solve

$$
w^{(k+1)}=\arg \max _{\|w\|=1 ; w \perp w^{(1)}, \ldots, w^{(k)}} w \hat{\Sigma} w^{T}
$$

- Using the same arguments as before, we have

$$
\hat{\Sigma} w^{(k+1)}=\lambda_{k+1} w^{(k+1)}
$$

where λ_{k+1} is the $(k+1)^{t h}$ largest eigenvalue

In summary, suppose

$$
X^{T} X=U \Lambda U^{T}
$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^{T} X$.)

- Recall that the columns of U are the eigenvectors of $X^{T} X$ and the diagonal of Λ contains the eigenvalues of $X^{T} X$ (i.e., the (square of the) singular values of X).
- Then the principal components of X are the columns of $X U$.
- Write $U=\left(u_{1}, \ldots, u_{p}\right)$. Then the variance of the i-th principal component is

$$
\left(X u_{i}\right)^{T}\left(X u_{i}\right)=u_{i}^{T} X^{T} X u_{i}=\left(U^{T} X^{T} X U\right)_{i i}=\Lambda_{i i} .
$$

Conclusion: The variance of the i-th principal component is the i-th eigenvalue of $X^{T} X$.

- We say that the first k PCs explain $\left(\sum_{i=1}^{k} \Lambda_{i i}\right) /\left(\sum_{i=1}^{p} \Lambda_{i i}\right) \times 100$ percent of the variance.

PCA: summary

