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Lecture 22: Principal component analysis (PCA)
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Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural networks

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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The materials of the course can be organized

@ By learning settings:

@ By problems: e Standard setting
o Classification e Online learning
o Regression o Reinforcement learning
o Clustering o Active learning
e Manifold learning @ By meta-level techniques:

o By methods:
o Regression-based methods
o Tree-based methods
o Network-based methods

Regularization
Kernel methods
Boosting
Bootstrapping
Bayesian learning
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Diagram of a typical supervised learning problem
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Supervised learning: learning a function that maps an input to an
output based on example input-output pairs
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Unsupervised learning

@ Unsupervised learning
e learning an unlabelled dataset: we observe a vector of
measurements x; but no associated response y;
e searching for indirect hidden structures, patterns or features to
analyze the data
@ Problems:
e Manifold learning
o Clustering
e Anomoly detection
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Manifolds

@ high-dimensional data often has a low-rank structure

@ Question: how can we discover low dimensional structures in
data?
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Manifold learning

@ learning geometric and topological structures of
high-dimensional manifolds

@ learning the low-dimensional approximation (or embedding) to
visualize the dataset

@ learning the mapping from high-dimensional manifold to its
low-dimensional embedding
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What we will learn

Principal component analysis

Multi-dimensional scaling (MDS)

Locally linear embedding (LLE)

Spectral embedding

t-distributed Stochastic Neighbor Embedding (¢-SNE)
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Principal component analysis

Problem: How can we discover low dimensional structures in data?

@ Principal components analysis: construct projections of the data
that capture most of the variability in the data.

@ Provides a low-rank approximation to the data.

o Can lead to a significant dimensionality reduction.
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PCA: first component
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PCA: second component
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PCA: formulation

We have a random vector X

X1

X2
X =

Xp

with mean 0 and population variance-covariance matrix

2
01 012 ... O1p
2
g1 05 ... 02
var(X) =X = : :
2
Opl Op2 ... Op
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PCA: formulation

Consider the linear combinations

Y1 = w11 X1+ wipXo + -+ wipXp
Yy = wo1 X1 + e Xo + -+ 4 wop X,
Yp = Wp].Xl + Wp2X2 + -+ prXp
then
P p
var Z Z Wik WOkl = W,'ZW,-T
k=1 /=1
and
p
cov(Y;, Yj) = ZZ Wik WjiO k| = WiZWJ-T
k=1 I=1
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PCA: formulation

o Let X € R"P with rows x1,x2,...,Xx, € RP.

@ We think of X as n observations of a random vector
(Xl,Xg, Ce ,Xn) € RP

@ Suppose each column has mean 0
@ We want to find a linear combination

wiXi +wXo+ ...+ Wpo

with maximum variance.

(Intuition: we look for a direction where the data varies the
most.)
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PCA

@ In practice, we don't know the covariance matrix
Y = E[XTX], and we need to approximate that by

3y =XTX
@ We want to solve
-

w®) = arg max wxw
[wll=1

@ Note that

Sl w)? = X T2 = wXTXwT = wEw”
=1
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PCA: first component

@ We solve

w() = arg max wiw'
lwll=1

@ Known result:

max WAW | = Apmax
lwl=1

where A, is the largest eigenvalue of A, and the equality is
obtained if w is an eigenvector corresponding to Apmax
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Let A € RP*P be a symmetric (or Hermitian) matrix. The Rayleigh
quotient is defined by
2TAz  (Az,z)

R(Aa) = Tt = 0200 (@ eRa £ 0p).

Observations:
Q If Az = Az with ||z||2 = 1, then R(A,z) = A. Thus,

sup R(A, ) > Amax(A4).
z#0

Q Let {)\,..., Ap} denote the eigenvalues of A, and let

{v1,...,vp} C RP be an orthonormal basis of eigenvectors of

P 2
A Mz =3 G, then R(A,x) = X=X,
It follows that

i=1"1

sup R(A, x) < Amax(A4).
z#0

Thus, sup, o R(A, x) = supg,=1 2T Ar = Amax(A).
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PCA: second component

We look for a new linear combination of the Xi's that
@ is orthogonal to the first principal component, and
@ maximizes the variance.

In other words

w® =arg  max wiw'
lw||=1;wLw@®)

Using a similar argument as before, we have

sw® = \uw®

where )y is the second largest eigenvalue
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PCA: high-order components

@ We solve

wlkt) = arg max wiw’
lwl=1;wLw® .. wk)

@ Using the same arguments as before, we have

$ D) =y w1

where A1 is the (k + 1) largest eigenvalue
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In summary, suppose

XTX =UAUT
where U € RP*P is an orthogonal matrix and A € RP*P is diagonal.
(Eigendecomposition of X7 X )
o Recall that the columns of U are the eigenvectors of X7 X and
the diagonal of A contains the eigenvalues of X7 X (i.e., the
(square of the) singular values of X).
@ Then the principal components of X are the columns of XU.
o Write U = (u1,...,up). Then the variance of the i-th principal
component is

(Xu) " (Xw) = ul X" Xuy = (UTXT XUy = Ay

Conclusion: The variance of the i-th principal component is the
i-th eigenvalue of X7 X.

o We say that the first k PCs explain (3%, Ay)/(3SF_, Ayi) x 100
percent of the variance.
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PCA: summary

Percentage of explained variance of each component
o
o
o

1 2 3 4 5 6 7 8 9 bl
Number of principal components
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