Mathematical techniques in data science

Lecture 22: Principal component analysis (PCA)

April 15th, 2019

Schedule

Week	Chapter
1	Chapter 2: Intro to statistical learning
3	Chapter 4: Classification
4	Chapter 9: Support vector machine and kernels
5, 6	Chapter 3: Linear regression
7	Chapter 8: Tree-based methods + Random forest
8	
9	Neural networks
12	PCA o Manifold learning
11	Clustering: K-means \rightarrow Spectral Clustering
10	Bayesian methods + UQ
13	Reinforcement learning/Online learning/Active learning
14	Project presentation

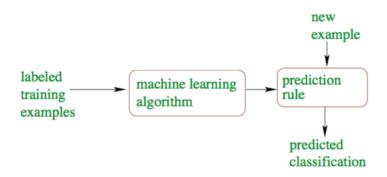
Topics

The materials of the course can be organized

- By problems:
 - Classification
 - Regression
 - Clustering
 - Manifold learning
- By methods:
 - Regression-based methods
 - Tree-based methods
 - Network-based methods

- By learning settings:
 - Standard setting
 - Online learning
 - Reinforcement learning
 - Active learning
- By meta-level techniques:
 - Regularization
 - Kernel methods
 - Boosting
 - Bootstrapping
 - Bayesian learning

Diagram of a typical supervised learning problem

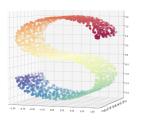


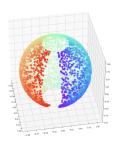
Supervised learning: learning a function that maps an input to an output based on example input-output pairs

Unsupervised learning

- Unsupervised learning
 - learning an unlabelled dataset: we observe a vector of measurements x_i but no associated response y_i
 - searching for indirect hidden structures, patterns or features to analyze the data
- Problems:
 - Manifold learning
 - Clustering
 - Anomoly detection

Manifolds





- high-dimensional data often has a low-rank structure
- Question: how can we discover low dimensional structures in data?

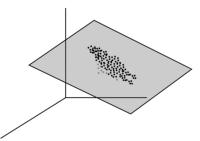
Manifold learning

- learning geometric and topological structures of high-dimensional manifolds
- learning the low-dimensional approximation (or embedding) to visualize the dataset
- learning the mapping from high-dimensional manifold to its low-dimensional embedding

What we will learn

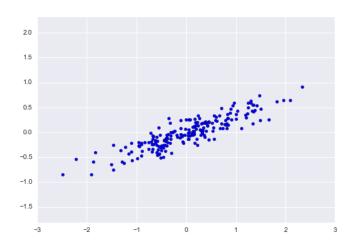
- Principal component analysis
- Multi-dimensional scaling (MDS)
- Locally linear embedding (LLE)
- Spectral embedding
- t-distributed Stochastic Neighbor Embedding (t-SNE)

Principal component analysis

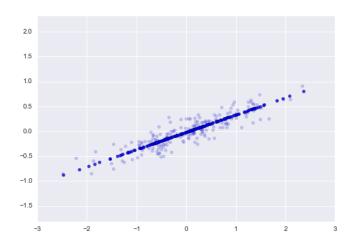


Problem: How can we discover low dimensional structures in data?

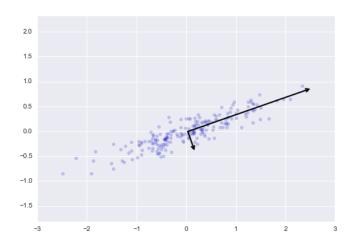
- Principal components analysis: construct projections of the data that capture most of the *variability* in the data.
- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.



PCA: first component



PCA: second component



PCA: formulation

We have a random vector X

$$X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{pmatrix}$$

with mean 0 and population variance-covariance matrix

$$\operatorname{var}(X) = \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_p^2 \end{pmatrix}$$

PCA: formulation

Consider the linear combinations

$$Y_1 = w_{11}X_1 + w_{12}X_2 + \dots + w_{1p}X_p$$

 $Y_2 = w_{21}X_1 + e_{22}X_2 + \dots + w_{2p}X_p$
 \dots
 $Y_p = w_{p1}X_1 + w_{p2}X_2 + \dots + w_{pp}X_p$

then

$$\operatorname{var}(Y_i) = \sum_{k=1}^{p} \sum_{l=1}^{p} w_{ik} w_{il} \sigma_{kl} = w_i \Sigma w_i^T$$

and

$$cov(Y_i, Y_j) = \sum_{k=1}^{p} \sum_{l=1}^{p} w_{ik} w_{jl} \sigma_{kl} = w_i \Sigma w_j^T$$

PCA: formulation

- Let $X \in \mathbb{R}^{n \times p}$ with rows $x_1, x_2, \dots, x_n \in \mathbb{R}^p$.
- We think of X as n observations of a random vector $(X_1, X_2, \dots, X_n) \in \mathbb{R}^p$
- Suppose each column has mean 0
- We want to find a linear combination

$$w_1X_1+w_2X_2+\ldots+w_pX_p$$

with maximum variance.

(Intuition: we look for a direction where the data varies the most.)

• In practice, we don't know the covariance matrix $\Sigma = E[X^T X]$, and we need to approximate that by

$$\hat{\boldsymbol{\Sigma}} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}$$

We want to solve

$$w^{(1)} = \arg\max_{\|w\|=1} w \hat{\Sigma} w^T$$

Note that

$$\sum_{i=1}^{n} |\langle x_i, w \rangle|^2 = \|\mathbf{X} w^T\|^2 = w \mathbf{X}^T \mathbf{X} w^T = w \hat{\boldsymbol{\Sigma}} w^T$$

PCA: first component

We solve

$$w^{(1)} = \arg\max_{\|w\|=1} w \hat{\Sigma} w^T$$

• Known result:

$$\max_{\|w\|=1} wAw^T = \lambda_{max}$$

where λ_{max} is the largest eigenvalue of A, and the equality is obtained if w is an eigenvector corresponding to λ_{max}

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The *Rayleigh quotient* is defined by

$$R(A, x) = \frac{x^T A x}{x^T x} = \frac{\langle A x, x \rangle}{\langle x, x \rangle}, \qquad (x \in \mathbb{R}^p, x \neq \mathbf{0}_{p \times 1}).$$

Observations:

- ① If $Ax=\lambda x$ with $\|x\|_2=1$, then $R(A,x)=\lambda$. Thus, $\sup_{x\neq 0}R(A,x)\geq \lambda_{\max}(A).$
- ② Let $\{\lambda_1,\dots,\lambda_p\}$ denote the eigenvalues of A, and let $\{v_1,\dots,v_p\}\subset\mathbb{R}^p$ be an orthonormal basis of eigenvectors of A. If $x=\sum_{i=1}^p\theta_iv_i$, then $R(A,x)=\frac{\sum_{i=1}^p\lambda_i\theta_i^2}{\sum_{i=1}^n\theta_i^2}$. It follows that $\sup_{x\neq 0}R(A,x)\leq\lambda_{\max}(A).$

Thus, $\sup_{x\neq \mathbf{0}} R(A,x) = \sup_{\|x\|_2=1} x^T A x = \lambda_{\max}(A)$.

PCA: second component

We look for a new linear combination of the Xi's that

- is orthogonal to the first principal component, and
- maximizes the variance.

In other words

$$w^{(2)} = \arg\max_{\|w\|=1; w \perp w^{(1)}} w \hat{\Sigma} w^T$$

Using a similar argument as before, we have

$$\hat{\Sigma}w^{(2)} = \lambda_2 w^{(2)}$$

where λ_2 is the second largest eigenvalue

PCA: high-order components

We solve

$$w^{(k+1)} = \arg\max_{\|w\|=1; w \perp w^{(1)}, \dots, w^{(k)}} w \hat{\Sigma} w^T$$

• Using the same arguments as before, we have

$$\hat{\Sigma}w^{(k+1)} = \lambda_{k+1}w^{(k+1)}$$

where λ_{k+1} is the $(k+1)^{th}$ largest eigenvalue

PCA: summary

In summary, suppose

$$X^TX = U\Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of X^TX .)

- Recall that the columns of U are the eigenvectors of X^TX and the diagonal of Λ contains the eigenvalues of X^TX (i.e., the (square of the) singular values of X).
- ullet Then the principal components of X are the columns of XU.
- \bullet Write $U=(u_1,\ldots,u_p).$ Then the variance of the i-th principal component is

$$(Xu_i)^T(Xu_i) = u_i^T X^T X u_i = (U^T X^T X U)_{ii} = \Lambda_{ii}.$$

Conclusion: The variance of the i-th principal component is the i-th eigenvalue of X^TX .

• We say that the first k PCs explain $(\sum_{i=1}^k \Lambda_{ii})/(\sum_{i=1}^p \Lambda_{ii}) \times 100$ percent of the variance.

PCA: summary

