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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural networks
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation

Mathematical techniques in data science



Manifold learning

high-dimensional data often has a low-rank structure

question: how can we discover low dimensional structures in
data?
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Some definitions

Metric space: a space on which one can compute the distance
between any two points

Manifold: every point has a neighborhood that is
homeomorphic to an open subset of an Euclidean space

One may say that a manifold is locally Euclidean while
globally its structure is more complex

The dimension of a manifold is equal to the dimension of this
Euclidean space
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Topics

Linear methods

Principal component analysis
Multi-dimensional scaling (MDS)

Non linear methods

Isometric feature mapping (Isomap)
Locally linear embedding (LLE)
Spectral embedding (specifically, Laplace eigenmap)
t-distributed Stochastic Neighbor Embedding (t-SNE)
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Principal component analysis
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Problem settings

MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ‖xi − xj‖)2
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MDS

Mathematical techniques in data science



Distance on a manifold
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Neighbor graph
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Intrinsic distance
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Graph embedding
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Isomap
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Locally linear embedding

A manifold is locally Euclidean while globally its structure is
more complex

Locally, the relation between data points in a neighborhood is
linear/affine

Idea: try to preserve this linear structure
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Locally linear embedding
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LLE
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Laplace eigenmap
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The Laplace-Beltrami operator

Let M be a smooth, compact, m-dimensional Riemannian
manifold in Rl

We look for a map from the manifold such that points close
together on the manifold are mapped close together

Locally, we have

f (z)− f (x) ≈ 〈∇f (x), z − x〉

and ‖∇f (x)‖ is a measure of local distortion by the map

Idea:

min
‖f ‖L2(M)=1

∫
M
‖∇f ‖2
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The Laplace-Beltrami operator

Idea:

min
‖f ‖L2(M)=1

∫
M
‖∇f ‖2

Define
L(f ) = −div∇f

then ∫
M
‖∇f ‖2 =

∫
M
L(f )f

The form above is analogous to

〈Aw ,w〉 = w tAw

and the optimization above can (in theory) be solved by
eigenvalue decomposition
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The Laplace-Beltrami operator

We have ∫
M
‖∇f ‖2 =

∫
M
L(f )f = 〈L(f ), f 〉

The form above is analogous to

〈Aw ,w〉 = w tAw

and the optimization above can (in theory) be solved by
eigenvalue decomposition

Problem: in manifold learning, we don’t have information
about the manifold, just a sample of it

Question: how to approximate L(f ) by the samples?
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Heat kernel

In Rm, we know that the heat equation

ut(x , t)− Lu(x , t) = 0

u(x , 0) = f (x)

has solution of the form

u(x , t) =

∫
Ht(x , y)f (y)dy

with

Ht(x , y) ≈ (4πt)−m/2e−
|x−y|2

4t

when t ≈ 0 and x ≈ y , and

lim
t→0

∫
Ht(x , y)f (y)dy = f (x)
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Heat kernel

We deduce that

Lf (x) = Lfu(x , 0) = −ut(x , t)|t=0

≈ 1

t

[
f (x)− (4πt)−m/2

∫
e−
|x−y|2

4t f (y)

]
Sketchy maths

locally, M are just Euclidean space, and heat are transferred in
a very similar way
If t is small, long term interaction on the manifold are killed
Laplace of a constant function is 0
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Approximating the Laplace operator

Lf (x) ≈ 1

t

[
f (x)− (4πt)−m/2

∫
e−
|x−y|2

4t f (y)

]
Sketchy maths

locally, M are just Euclidean space, and heat are transferred in
a very similar way
If t is small, long term interactions on the manifold are killed
Laplace of a constant function is 0

Then Lf (xi ) can be approximate by

C

f (xi )
∑

0<|xi−xj |<ε

e−
|x−y|2

4t −
∑

0<|xi−xj |<ε

e−
|xi−xj |

2

4t f (xj)
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Approximating the Laplace operator

Lf (xi ) can be approximate by

C

f (xi )
∑

0<|xi−xj |<ε

e−
|x−y|2

4t −
∑

0<|xi−xj |<ε

e−
|xi−xj |

2

4t f (xj)


Denote

Wij = e−
|xi−xj |

2

4t , |xi − xj | < ε

and D is the diagonal matrix with entry Dii =
∑

j Wij

We want to find f such that

〈(D −W )f , f 〉

is minimized
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Laplace eigenmap

Step 1: Construct the neighbor graph

For each point, determine either

K nearest neighbors
all points in a fixed radius

each point is connected to its neghbours

edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t
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Laplace eigenmap

Step 2: Embedding by Laplace operator’s eigenvectors

Define L = D −W

We want to minimize

min
〈Df ,f 〉=1

〈Lf , f 〉

Solve for eigenvectors {f1, f2, . . . , fm}
Map

x → (〈f1, x〉, 〈f2, x〉, . . . , 〈fm, x〉)
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t-distributed stochastic neighbor embedding
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t-SNE

All methods proposed so far are great, and they work well if
M is a manifold of low-dimension (2 dimension)

Sometimes, even if the dimension of M is high, we still want
to embed it to R2 for learning
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Visualization of MNIST by Isomap
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t-SNE

There are many problems with embedding high-dimensional
manifold to low-dimensional space

Structural differences

in ten dimensions, it is possible to have 11 data points that are
mutually equidistant
there is no way to model this faithfully in a two-dimensional
map

Crowding problem:

the volume of a sphere centered on datapoint i scales as rm,
where r is the radius and m the dimensionality of the sphere
the area of the two-dimensional map that is available to
accommodate moderately distant data points will not be
nearly large enough compared with the area available to
accommodate nearby data points
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Stochastic neighbor embedding

converting the high-dimensional Euclidean distances between
data points into conditional probabilities that represent
similarities

The similarity of datapoint xj to datapoint xi is the
conditional probability, pj |i , that xi would pick xj as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at xi
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Stochastic neighbor embedding

Assume that the data points are mapped to y1, y2, . . . , yn in
low-dimension

we construct a similar quantity for a y

Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij
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t-SNE

employ a Student t-distribution with one degree of freedom
(which is the same as a Cauchy distribution) as the
heavy-tailed distribution in the low-dimensional map

Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij
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Visualization of MNIST by t-SNE
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