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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural networks
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Clustering

Unsupervised problem

Want to label points according to a measure of their similarity
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Clustering
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K-means clustering

Mathematical techniques in data science



Lloyd’s algorithm
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Issues with k-means

The globally optimal result may not be achieved

The number of clusters must be selected beforehand

k-means is limited to linear cluster boundaries
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Lloyd’s algorithm: initiation step

There is no guarantee that Lloyds’ algorithm will find the
global optimum

As a result, we use different starting points

Common initiation schemes:

The Forgy method: Pick K observations at random and use
these as the initial means
Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster
kmeans++ (default in sklearn)
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kmeans++ initiation

Intuition: spreading out the k initial cluster centers is a good thing

Choose one center uniformly at random from among the data
points.

For each data point x , compute D(x), the distance between x
and the nearest center that has already been chosen.

Choose one new data point at random as a new center, using
a weighted probability distribution where a point x is chosen
with probability proportional to D(x)2

Repeat Steps 2 and 3 until k centers have been chose
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Choosing k

Elbow method

Cross-validation

Average silhouette method

Gap statistic method
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Elbow method
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Issues with k-means

k-means is limited to linear cluster boundaries

Solution: adding non-linearities to the model

kernel k-means
spectral clustering
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Kernel k-means
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Kernel k-means = kernel trick + k-means

Ideas:

maps the data to a high-dimensional space (called feature
space) by a non-linear function φ to separate the clusters
linearly
Using this high-dimensional representation to run k-means
Project the data back to the original space to identify the
clusters

Note: the kernel trick works best if we don’t have to construct
φ(x) explicitly, but can compute

K (x , y) = 〈φ(x), φ(y)〉

For k-means, we need to compute

‖φ(xi )−mj‖2
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Kernels
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Kernel k-means = kernel trick + k-means

Note that

‖φ(xi )−mj‖2 = 〈φ(xi )−mj , φ(xi )−mj〉
= 〈φ(xi ), φ(xi )〉 − 2〈φ(xi ),mj〉+ 〈mj ,mj〉

Given a cluster Cj , its center (on feature space) is

mj =
1

|Cj |
∑
b∈Cj

φ(b)

Thus

〈φ(xi ),mj〉 =
1

|Cj |
∑
b∈Cj

〈φ(xi ), φ(b)〉 =
1

|Cj |
∑
b∈Cj

K (xi , b)
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Kernel k-means = kernel trick + k-means

Note that

‖φ(xi )− µj‖2 = 〈φ(xi )− uj , φ(xi )− uj〉
= 〈φ(xi ), φ(xi )〉 − 2〈φ(xi ), uj〉+ 〈uj , uj〉

Given a cluster Cj , its center (on feature space) is

mj =
1

|Cj |
∑
b∈Cj

φ(b)

Thus

〈mj ,mj〉 =
1

|Cj |2
∑

b,c∈Cj

K (b, c)
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Kernel k-means
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Spectral clustering
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Recall: Graph-based manifold embedding
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Spectral embedding (Laplace eigenmap)

Step 1: Construct the neighbor graph

For each point, determine either

K nearest neighbors
all points in a fixed radius

each point is connected to its neighbours

edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t
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Spectral embedding (Laplace eigenmap)

Step 2: Embedding by Laplace operator’s eigenvectors

Define L = D −W

We want to minimize

min
〈Df ,f 〉=1

〈Lf , f 〉

Solve for eigenvectors {f1, f2, . . . , fm}
Map

x → (〈f1, x〉, 〈f2, x〉, . . . , 〈fm, x〉)
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Spectral clustering: overview
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Neighbor graph

Step 1: Construct the neighbor graph

For each point, determine either

K nearest neighbors
all points in a fixed radius

each point is connected to its neighbours

edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t
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Remarks

Wij = e−
|xi−xj |

2

4t

→ the RBF (Gaussian) kernel

If xi ≈ xj , then 〈φ(xi ), φ(xj)〉 ≈ 0

If xi is far from xj , then φ(xi ) ⊥ xj

This means that when the RBF kernel is used, we are virtually
mapping the dataset to an infinite dimensional space, where
the points are clustered around some vector that are
perpendicular to each other
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Notations
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Graph embedding

Step 2:

Compute eigenvectors of the (normalized or unnormalized)
graph Laplacian

L = D −W , Lsym = D−1/2LD−1/2

Construct a matrix containing the smallest K eigenvectors of
L or Lsym as columns

Normalize the rows to have norm 1

Each row identifies a vertex of the graph to a point in RK
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How does spectral clustering work?
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Ideal case

Suppose that k = 3, and the three cluster of size n1, n2, n3
are S1, S2,S3

Assume that the data S = {x1, x2, . . . , xn} are arranged in
such a way that the first n1 points are in S1, the next n2 in
S2, and so on

Assume further that the cluster are infinitely far apart
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Ideal case

A = D −W =

A11 0 0
0 A22 0
0 0 A33


and

Lsym =

L11 0 0
0 L22 0
0 0 L33


where

Lii = (D ii )−1/2(Aii )(D ii )−1/2

Note: Lii is non-negative definite and have eigenvalues
0 ≤ λ1 ≤ λ2 ≤ . . . λn
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Ideal case

The 3 smallest eigenvectors have the forms (x1, 0, 0), or
(0, x2, 0), or (0, 0, x3)

Stack them by columns

x =

x1 0 0
0 x2 0
0 0 x3

 ∈ Rn×3

If we normalize the row, then all points in the first cluster are
mapped to (1, 0, 0)
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Variations
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Variations
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Variations

Mathematical techniques in data science



Example
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Example
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