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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural networks
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Clustering

Unsupervised problem

Want to label points according to a measure of their similarity
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Clustering
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K-means clustering
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Lloyd’s algorithm

Mathematical techniques in data science



Issues with k-means

k-means is limited to linear cluster boundaries

Solution: adding non-linearities to the model

kernel k-means
spectral clustering
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Kernel k-means = kernel trick + k-means

Ideas:

maps the data to a high-dimensional space (called feature
space) by a non-linear function φ to separate the clusters
linearly
Using this high-dimensional representation to run k-means
Project the data back to the original space to identify the
clusters

Note: the kernel trick works best if we don’t have to construct
φ(x) explicitly, but can compute

K (x , y) = 〈φ(x), φ(y)〉

For k-means, we need to compute

‖φ(xi )−mj‖2
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Kernel k-means
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Spectral clustering: overview

Mathematical techniques in data science



Neighbor graph

Step 1: Construct the neighbor graph

For each point, determine either

K nearest neighbors
all points in a fixed radius

each point is connected to its neighbours

edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t
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Graph embedding

Step 2:

Compute eigenvectors of the (normalized or unnormalized)
graph Laplacian

L = D −W , Lsym = D−1/2LD−1/2

Construct a matrix containing the smallest K eigenvectors of
L or Lsym as columns

Normalize the rows to have norm 1

Each row identifies a vertex of the graph to a point in RK
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Other clustering methods
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Mean shift clustering

Idea #1: density estimation
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Mean shift clustering

Idea #2: searching for the modes by gradient ascend
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Mean shift clustering

Mean shift
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Mean shift clustering

Mean shift
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Kernel density estimator (KDE)

Given data set {x1, x2, . . . , xn}, the density function is
estimated by

f̂h(x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
where

h is the bandwidth
K is a kernel: symmetric function around 0, integrate to 1
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1D kernels
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Kernel density estimator (KDE)
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Mean shift clustering
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Hierarchical clustering

Data:

Cluster:
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Hierarchical clustering

Distance between clusters:
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DBSCAN

parameter: k and ε

core point: the ball of the radius ε around x contains at least
k points
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High-level view of clustering
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Axiomatic definition of clustering (attempt)
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Axiomatic definition of clustering (attempt)

Consider a clustering function, F , that takes as input any finite
domain X with a dissimilarity function d over its pairs and returns
a partition of X
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Axiomatic definition of clustering (attempt)

Theorem

There exists no function, F , that satisfies all the three properties:
Scale Invariance, Richness, and Consistency.
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Axiomatic definition of clustering (attempt)

k-Richness: every partition of the domain into k subsets is
attainable by the clustering function)

Theorem

k-Richness, Scale Invariance and Consistency all hold for the
k-means clustering algorithm
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