Mathematical techniques in data science

Lecture 27: Clustering: Random topics

April 26th, 2019
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Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural networks

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Clustering

@ Unsupervised problem

@ Want to label points according to a measure of their similarity
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Clustering

We try to partition observations into “clusters” such that:
@ Intra-cluster distance is minimized.
@ Inter-cluster distance is maximized.

Inter-cluster
distance

Intra-cluster
distance *
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K-means clustering

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.

e We are given n observations x1,zs,...,2, € RP.

@ We are given a number of clusters K.

o We want a partition S = {S1,..., Sk} of {x1,...,2,} such

that
K
S = arg;ninz > Ny — il

=1 T €S;

where p; = ﬁ ijesi xj is the mean of the points in S; (the
“center” of S;).
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Lloyd's algorithm

Lloyds's algorithm for K-means clustering
@ Denote by C(i) the cluster assigned to z;.
o Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a “cluster centers” assignment mgo), e ,mgg). Set
t := 0. Repeat:
@ Assign each point z; to the cluster whose mean is closest to
xj
j

S = {aj ¢ lay =m0 < floy =m0 VE =1, K},

(t+1)

i

mgtﬂ) = : Z Tj.

()
1571, s

@ Compute the average m of the observations in cluster i:
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Issues with k-means

@ k-means is limited to linear cluster boundaries
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@ Solution: adding non-linearities to the model

o kernel k-means
e spectral clustering
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Kernel k-means = kernel trick - k-means

o ldeas:

o maps the data to a high-dimensional space (called feature
space) by a non-linear function ¢ to separate the clusters
linearly

e Using this high-dimensional representation to run k-means

e Project the data back to the original space to identify the
clusters

@ Note: the kernel trick works best if we don't have to construct
¢(x) explicitly, but can compute

K(x,y) = (#(x), é(y))

@ For k-means, we need to compute

lo(xi) — m|?
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Kernel k-means

Input: K: kernel k: number of clusters

Output: C4,....,Ck: partitioning of the points
1. Initialize the k clusters: Cio), v C,EO).

2. Set t =0.

3. For each point a, find its new cluster index as

j*(a) = argmin,[|¢(a) — m;|*, using (2).
4. Compute the updated clusters as
t+1 _ Lk .
¢y ={a: j'(a) =j}

5. If not converged, set t = ¢t + 1 and go to Step 3;
Otherwise, stop.
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Spectral clustering: overview

© Construct a similarity matrix measuring the similarity of pairs
of objects.

@ Use the similarity matrix to construct a (weighted or
unweighted) graph.

© Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into RP).

@ Cluster the graph
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Neighbor graph

Step 1: Construct the neighbor graph
@ For each point, determine either

e K nearest neighbors
o all points in a fixed radius

@ each point is connected to its neighbours

o edge length equal to Euelidean-distancebetweenthepoints

2
Ix; =1

VVU = e_ 4t
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Graph embedding

Step 2:

e Compute eigenvectors of the (normalized or unnormalized)
graph Laplacian

L=D—-W, Leyy=D1Y2LD71/?

@ Construct a matrix containing the smallest K eigenvectors of
L or Lsym as columns

@ Normalize the rows to have norm 1

@ Each row identifies a vertex of the graph to a point in R¥

Lk L I
- T —3
| I |

(1’1 Vo ... 1‘]\") *
| |
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Other clustering methods
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Mean shift clustering
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Idea #1: density estimation
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Mean shift clustering

Idea #2: searching for the modes by gradient ascend
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Mean shift clustering

Bandwidth Value: 2
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https://spin.atomicobject.com/wp-content/uploads/ms_2d_bw_2.gif

Mean shift clustering

Mean shift
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https://spin.atomicobject.com/wp-content/uploads/ms_3d_image_animation.gif

Kernel density estimator (KDE)

e Given data set {x1, x2,...,x,}, the density function is
estimated by

A 1 &« X — Xj
fh(x):nhZK< - >
i=1

where

e his the bandwidth
e K is a kernel: symmetric function around 0, integrate to 1
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1D kernels
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Mean shift clustering
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Hierarchical clustering

Data:

® @q

/

Cluster:

@@@
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Hierarchical clustering

Distance between clusters:

¢ The maximum distance between elements of each cluster (also called complete-linkage clustering):
max{d(z,y):x€ A, yeB}.
¢ The minimum distance between elements of each cluster (also called single-linkage clustering):
min{d(z,y):z € A,y B}.
e The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in UPGMA):
\B\ Z Zd z,Y).
zcA yeB

o The sum of all intra-cluster variance.
e The increase in variance for the cluster being merged (Ward's method(7))
» The probability that candidate clusters spawn from the same distribution function (V-linkage).
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DBSCAN

@ parameter: k and €

@ core point: the ball of the radius € around x contains at least
k points
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High-level view of clustering
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Axiomatic definition of clustering (attempt)

Scale Invariance (SI) For any domain set X, dissimilarity function d, and

any o > 0, the following should hold: F(X,d) = F(X,ad) (where

(ad)(z,y) df o d(z,y)).

Richness (Ri) For any finite X and every partition C = (C4,...Cy) of X (into
nonempty subsets) there exists some dissimilarity function d over X such
that F(X,d) = C.

Consistency (Co) If d and d’ are dissimilarity functions over X, such that
for every x,y € X, if z,y belong to the same cluster in F(X,d) then
d'(z,y) < d(z,y) and if z,y belong to different clusters in F'(X,d) then
d'(z,y) > d(z,y), then F(X,d) = F(X,d).
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Axiomatic definition of clustering (attempt)

Consider a clustering function, F, that takes as input any finite
domain X with a dissimilarity function d over its pairs and returns
a partition of X

Scale Invariance (SI) For any domain set X, dissimilarity function d, and

any o > 0, the following should hold: F(X,d) = F(X,ad) (where

(ad)(z,y) ¥ ad(z,y)).

Richness (Ri) For any finite X and every partition C' = (C4,...Cy) of X (into
nonempty subsets) there exists some dissimilarity function d over X such
that F(X,d) = C.

Consistency (Co) If d and d’ are dissimilarity functions over X, such that
for every x,y € X, if z,y belong to the same cluster in F(X,d) then
d'(z,y) < d(z,y) and if z,y belong to different clusters in F(X,d) then
d'(z,y) > d(z,y), then F(X,d) = F(X,d).
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Axiomatic definition of clustering (attempt)

There exists no function, F, that satisfies all the three properties:
Scale Invariance, Richness, and Consistency.
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Axiomatic definition of clustering (attempt)

k-Richness: every partition of the domain into k subsets is
attainable by the clustering function)

k-Richness, Scale Invariance and Consistency all hold for the
k-means clustering algorithm
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