Mathematical techniques in data science

Lecture 28: Bayesian inference and MCMCs

April 29th, 2019
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Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural networks

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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— It is difficult to make predictions, especially about the future.
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Modelling uncertainties

— Data science is about making predictions in the presence of
uncertainties

g-)\ 5 T ¥ : T

oh 4t observations ! projections |
g 3l :

: |

o 2T i

3 |

g 1t |

= OFf i

el 1

o] 1

'Eb _1 1 1 1 1

1850 19500 1950 2000 2050 2100

year

Mathematical techniques in data science



Modelling uncertainties
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Uncertainty quantification

/ (Noisy) Data

Parameters t

5
a ﬂ [ Forward Model J
Quantity of
Interest
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Frequentist vs. Bayesian

Frequentist statistics:
o Compute point estimates (e.g. maximum likelihood).

o Define probabilities as the long-run frequency of events .

Bayesian statistics:
o Probabilities are a “state of knowledge” or a “state of belief".
o Parameters have a probability distribution.

@ Prior knowledge is updated in the light of new data.
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You flip a coin 14 times. You get head 10 times. What is
p := P(head)?
o Frequentist approach: estimate p using, say maximum likelihood:

10
~ — ~0.714.
P~14
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You flip a coin 14 times. You get head 10 times. What is
p := P(head)?
@ Frequentist approach: estimate p using, say maximum likelihood:

10
~ — ~ (0.714.
P~14

@ Bayesian approach: we treat p as a random variable.
© Choose a prior distribution for p, say P(p).
© Update the prior distribution using the data via Bayes’
theorem:

P(datalp)P(p)

Plpldata) = P(data)

x P(datalp)P(p).
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@ Bayesian approach: we treat p as a random variable.
© Choose a prior distribution for p, say P(p).
@ Update the prior distribution using the data via Bayes’
theorem:

P(datalp)P(p)

Ppldata) = P(data)

x P(data|p)P(p).

Note: “data|p” ~ Binomial(14, p). Therefore:
14
P(datalp) = (10) PP -pt

What should we choose for P(p)?
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Note: “data|p” ~ Binomial(14,p). Therefore:
14
P(datalp) = <10>p1°(1 -t

What should we choose for P(p)?
The beta distribution Beta(a, 3):

P(p;a, B) = %I)O‘_l(l —p)Pt (pe(0,1)).
NN =

0 0.2 0.4 0.6 0.8 1
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@ Suppose we decide to pick p ~ Beta(a, §). Then:

P(p|data) x P(data|p)P(p)

= (14>p1°(1 - p)47£(a A p* (1 —p)P!

10 ()L'(B)
o p'0(1 — p)tp (1 - p)*!
— p10+a—1(1 _p)4+ﬁ—1'

Remark: We don't need to worry about the normalization constant
since it is uniquely determined by the fact that P(p|data) is a
probability distribution.

@ Conclusion: P(p|data) ~ Beta(10 + o, 4 + ).
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@ How should we choose «, 37
According to our prior knowledge of p.

@ Suppose we have no prior knowledge: use a flat prior: = 5 =1
(Uniform distribution).
@ The resulting posterior distribution is p|data ~ Beta(11,5):

Our “knowledge” of p has now been updated using the observed
data (or evidence).
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Bayesian analysis

More generally: suppose we have a model for X that depends on some
parameters 6. Then:

@ Choose a prior P(6) for 6.
@ Compute the posterior distribution of 6 using
p(61X) = P(X|9) - P(0).

Note: Posterior = Prior x Likelihood.
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Bayesian analysis

Advantages:

@ Mimics the scientific method: formulate hypothesis, run experiment,
update knowledge.

@ Can incorporate prior information (e.g. the range of variables).
@ Automatically provides uncertainty estimates.
Drawbacks:
@ Not always obvious how to choose priors.
@ Can be difficult to compute the posterior distribution.

@ Can be computationally intensive to sample from the posterior
distribution (when not available in closed form).
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Central questions

@ How do we sample from the posterior distribution
P(0 |data) < P(data|d).P(p)

assuming that we can evaluate P(6 |data) point-wise (up to a
normalizing constant)

@ Consider a quantity of interest y = F(p), how can we compute

EP(9|data)[F(p)]7
and

VarP(6|data)[F(p)]a
and quantify related probabilistic properties of the quantity of
interest?
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Monte Carlo methods
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Monte Carlo methods

If we can sample independent samples X1, X5 ..., X, from
P(60 |data) < P(datal@).P(p)
then for any function F(6)

F(X1) 4+ F(X2) + ... F(X»)

—a.s. EP(0|data)[F(p)]v

as n goes to infinity.
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Uncertainty quantification

/ (Noisy) Data

Parameters t

5
a ﬂ [ Forward Model J
Quantity of
Interest

Mathematical techniques in data science



Inverse transform sampling

@ Let F(x) by the cdf of some 1D distribution

e Claim: If U is a uniform random variable on [0, 1], then
F~1(U) has F as its cdf

Proof:
Pr(F}(U) < z)
=Pr(U < F(z)) (applying F, to both sides)
= F(z) (because Pr(U < y) = y, when U is uniform on(0, 1))
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Rejection sampling

Ideas:
@ Suppose we want to sample from a distribution p(x), which is
known up to a proportional constant

@ If we know another easy-to-sample proposal distribution g(x)

that satisfies
p(x) < Mq(x)

@ then we can sample from p(x) as follows:
e sample x ~ g(x), and u ~ U([0,1]) (the uniform distribution
in [0,1])
o If
p(x)
Ma(x)

u<

then accept the sample
e otherwise, reject it
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Rejection sampling

Accept mginnf S

Reject region

X~ q(x) X

Figure 2. Rejection sampling: Sample a candidate x”) and a uniform variable u. Accept the candidate sample if
uMq(xD) < p(xD), otherwise reject it.
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Markov chain Monte Carlo
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MCMC

@ Markov chain Monte Carlo (MCMC) methods are popular ways
of sampling from complicated distributions (e.g. the posterior
distribution of a complicated model).

o Idea:

@ Construct a Markov chain with the desired distribution as its
stationary distribution .

@ Burn (e.g. forget) a given number of samples from the Markov
chain (while the chain converges to its stationary distribution).

© Generate a sample from the desired distribution
(approximately).

@ One generally then compute some statistics of the sample
(e.g. mean, variance, mode, etc.).
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o Let S :={s1,s2,...} be a countable set.

o A (discrete time) Markov chain is a discrete stochastic process
{X, :n=0,1,...} such that

@ X, is an S-valued random variable Vn > 0.

@ (Markov Property) For all i, j,49,...,in—1 € 5, and all n > 0:
P(X'n+1 = ]|X0 = an s 7X'n71 = Z‘nflen = Z) = P(X7L+1 = j|Xn = Z)

Interpretation: Given the present X, the future X, .1 is
independent of the past (Xo,..., X,—1).

@ The elements of S are called the states of the Markov chain.

@ When X,, = j, we say that the process is in state j at time n.
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Stationarity and transition probabilities

o A Markov chain is homogeneous (or stationary) if for all n > 0
and all i, 5 € S,

P(Xni1 = j|Xn =1) = P(X1 = j|Xo = i) =: p(i, j).

In other words, the transition probabilities do not depend on
time.

e We will only consider homogeneous chains in what follows.

o We denote by P := (p(i, j))i jes the transition matrix of the
chain.

o Note: P is a stochastic matrix, i.e.,

Vi,j €8, pi,j) >0, and VieS, Y p(i,j)=1.
JjES

o Conversely, every stochastic matrix is the transition matrix of
some homogeneous discrete time Markov chain.
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Example 1: (Two-state Markov chain)

S={0,1}, p(0,1)=a, p(1,0)=0b, a,be]0,1]

1—a a
r=(00):

We naturally represent P using a transition (or state) diagram:

b
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Example 2: (Simple random walk) Let &1, &5,€5,... be iid random
variables such that Vi > 1,

HOPlgG=+1)=p
fi: 0 P(&:O)IT 5
-1 P =-1)=g¢q

where p+r+q=1, p,r,q > 0.

o Let X be an integer valued random variable independent of the
&'s.

@ Define Vn > 1,

Xo=Xo+ Y &

i=1
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n-step transitions

Let {X,, : n > 0} be a Markov chain.
o We define the initial distribution of the chain by

1o() :== P(oni) (ZES)

o All distributional properties of a (homogeneous) Markov Chain

are determined by its initial distribution and transition probability
matrix.

@ For n > 1, we define the n-step transition probability p" (i, j)
by

p"(i,)) == P(Xn = j|Xo = i) = P(Xnim = j|Xm =1).

Also, define
1 i=j
0/: -
1,J) = .
p(i4) {0 it
o We define the n-step transition matrix by
P = (p"(i,j) 1 i,j € S).
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Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all
m,n > 1:
pltm) _ p(n) | p(m)

In particular, for all n > 1,
p — p.p=-1) ... _ pn

Moral: n-step transition probabilities are computed using matrix
multiplications.
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Chapman-Kolmogorov

o Let py, := (un(7) : ¢ € S) denote the distribution of X,;:
pn (i) := P(X,, =1).
Proposition: We have
Hintn = pm P, and  pn = po P

Moral: Distributional computations for Markov Chains are just
matrix multiplications.
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