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Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural networks

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Uncertainty quantification
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Frequentist vs. Bayesian

Frequentist statistics:
o Compute point estimates (e.g. maximum likelihood).

o Define probabilities as the long-run frequency of events .

Bayesian statistics:
o Probabilities are a “state of knowledge” or a “state of belief".
o Parameters have a probability distribution.

@ Prior knowledge is updated in the light of new data.
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Bayesian analysis

More generally: suppose we have a model for X that depends on some
parameters 6. Then:

@ Choose a prior P(6) for 6.
@ Compute the posterior distribution of 6 using
p(61X) = P(X|9) - P(0).

Note: Posterior = Prior x Likelihood.
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Central questions

@ How do we sample from the posterior distribution
P(0 |data) < P(datal|f).P(6)

assuming that we can evaluate P(6 |data) point-wise (up to a
normalizing constant)

@ Consider a quantity of interest y = F(6), how can we compute

EP(9|data)[F(6)]7
and

VarP(9|data)[F(9)]7
and quantify related probabilistic properties of the quantity of
interest?
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Monte Carlo methods

If we can sample independent samples X1, X5 ..., X, from
P(6 |data) o< P(datal@).P(0)
then for any function F(6)

F(X1) 4+ F(X2) + ... F(X»)

—a.s. EP(0|data)[F(p)]v

as n goes to infinity.
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Inverse transform sampling

@ Let F(x) by the cdf of some 1D distribution

e Claim: If U is a uniform random variable on [0, 1], then
F~1(U) has F as its cdf

Proof:
Pr(F}(U) < z)
=Pr(U < F(z)) (applying F, to both sides)
= F(z) (because Pr(U < y) = y, when U is uniform on(0, 1))
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Rejection sampling

Accept mginnf S

Reject region

X~ q(x) X

Figure 2. Rejection sampling: Sample a candidate x”) and a uniform variable u. Accept the candidate sample if
uMq(xD) < p(xD), otherwise reject it.
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Markov chain Monte Carlo
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o Let S :={s1,s2,...} be a countable set.

o A (discrete time) Markov chain is a discrete stochastic process
{X, :n=0,1,...} such that

@ X, is an S-valued random variable Vn > 0.

@ (Markov Property) For all i, j,49,...,in—1 € 5, and all n > 0:
P(X'n+1 = ]|X0 = an s 7X'n71 = Z‘nflen = Z) = P(X7L+1 = j|Xn = Z)

Interpretation: Given the present X, the future X, .1 is
independent of the past (Xo,..., X,—1).

@ The elements of S are called the states of the Markov chain.

@ When X,, = j, we say that the process is in state j at time n.
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Stationary Markov chains

e A Markov chain is homogeneous (or stationary) if for all n > 0
and all 7,5 € S,

P(Xpq1 = j|Xn =1) = P(X1 = j|Xo = i) =: p(i, j).

In other words, the transition probabilities do not depend on
time.

e We will only consider homogeneous chains in what follows.
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Transition probabilities

@ We denote by P := (p(i,j))i jes the transition matrix of the
chain.
@ Note: P is a stochastic matrix, i.e.,

Vi,j €8, pi,j) >0, and VieS, Y p(i,j)=1.
JES

o Conversely, every stochastic matrix is the transition matrix of
some homogeneous discrete time Markov chain.
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Example 1: (Two-state Markov chain)

S={0,1}, p(0,1)=a, p(1,0)=0b, a,be]0,1]

1—a a
r=(00):

We naturally represent P using a transition (or state) diagram:

b
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Example 2: (Simple random walk) Let &1, &5,€5,... be iid random
variables such that Vi > 1,

HOPlgG=+1)=p
fi: 0 P(&:O)IT 5
-1 P =-1)=g¢q

where p+r+q=1, p,r,q > 0.

o Let X be an integer valued random variable independent of the
&'s.

@ Define Vn > 1,

Xo=Xo+ Y &

i=1
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n-step transitions

Let {X,, : n > 0} be a Markov chain.
o We define the initial distribution of the chain by

1o() :== P(oni) (ZES)

o All distributional properties of a (homogeneous) Markov Chain

are determined by its initial distribution and transition probability
matrix.

@ For n > 1, we define the n-step transition probability p" (i, j)
by

p"(i,)) == P(Xn = j|Xo = i) = P(Xnim = j|Xm =1).

Also, define
1 i=j
0/: -
1,J) = .
p(i4) {0 it
o We define the n-step transition matrix by
P = (p"(i,j) 1 i,j € S).
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Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all
m,n > 1:
pltm) _ p(n) | p(m)

In particular, for all n > 1,
p — p.p=-1) ... _ pn

Moral: n-step transition probabilities are computed using matrix
multiplications.
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Chapman-Kolmogorov

o Let py, := (un(7) : ¢ € S) denote the distribution of X,;:
pn (i) := P(X,, =1).
Proposition: We have
Hintn = pm P, and  pn = po P

Moral: Distributional computations for Markov Chains are just
matrix multiplications.
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Reducibility

o Reducibility:

@ A state j € S is said to be accessible from i € S (denotde i — j) if
a system started in state 7 has a non-zero probability of
transitioning into state j at some point.

@ A state i € S is said to communicate with state j € S (denoted
i<« j)if bothi— jand j — 3.

Note: Communication is an equivalence relation.

A Markov chain is said to be irreducible if its state space is a
single communicating class.
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Transient

e Transience:

e A state i € S is said to be transient if, given that we start in
state i, there is a non-zero probability that we will never return
to 1.

o A state is recurrent if it is not transient.

@ The recurrence time of state i € S is
T; := min{n > 1: X,, =i given X = t}.

@ Note: ¢ € S is recurrent iff P(T; < o0) = 1.
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e Periodicity:
@ A state ¢ € S has period k if
k=ged{n>0:P(X, =1iXg=1) > 0}.

For example, suppose you start in state i and can only return to 7 at
time 6, 8,10,12, etc.. Then the period of 7 is 2.

@ If k =1, then the state is said to be aperiodic.

A Markov chain is aperiodic if every state is aperiodic.
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Limiting behavior

Limiting behavior of Markov chains: What happens to p"(i, j)
asn — o007

Example: (The two-state Markov chain)
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Limiting behavior

Recalling that

S={0,1}, p(0,1)=a, p(1,0)=0b, a,be]0,1]
l—a a
P:( b l—b)'

If (a,b) # (0,0), we have (exercise):

1 b a 1—a—-0)"[(a —a
n __
P _a+b(b a)+ a+b (—b b)'

Thus, if (a,b) # (0,0) and (a,b) # (1,1), then

b
lim p"(0,0) = lim p"(1,0) = ——
n

n— 00 a+b
a

- n . n -

Jim p"(0,1) = lim p"(1,1) = .
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Limiting behavior

b
li "(0,0) = 1 "(1,0) =
Jim p"(0,0) = lim p"(1,0) P>
a
li "0,1) = 1 "(1,1) =

Thus, the chain has a limiting distribution.
The limiting distribution is independent of the initial state.
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Stationary distribution

Recall: g1 = pnP.

A vector m = (w(i) : i € S) is said to be a stationary distribution
for a Markov chain {X,, : n > 0} if

Q> icgmi=1
© 7 = P, where P is the transition probability matrix of the
Markov chain.
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Stationary distribution

Remark: In general, a stationary distribution may not exist or be

unique.
Theorem: Let {X,, : n > 0} be an irreducible and aperiodic
Markov chain where each state is positive recurrent. Then

© The chain has a unique stationary distribution 7.
@ Forallie S, lim, o P(X, =1) = 7(i).
_ 1
0 T, = m
m(i) can be interpreted as the average proportion of time spent by
the chain in state i.
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MCMC

@ Markov chain Monte Carlo (MCMC) methods are popular ways
of sampling from complicated distributions (e.g. the posterior
distribution of a complicated model).

o Idea:

@ Construct a Markov chain with the desired distribution as its
stationary distribution 7.

@ Burn (e.g. forget) a given number of samples from the Markov
chain (while the chain converges to its stationary distribution).

© Generate a sample from the desired distribution
(approximately).
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Metropolis-Hastings algorithm

@ Nicolas Metropolis (1915-1999) was an American physicist. He
worked on the first nuclear reactors at the Los Alamos National
Laboratory during the second world war. Introduced the algorithm
in 1953 in the paper

Equation of State Calculations by Fast Computing Machines

with A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller
o W. K. Hastings (Born 1930) is a Canadian statistician who
extended the algorithm to the more general case in 1970.
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Metropolis-Hastings algorithm

@ Suppose we want to sample from a distribution P(x) = f(x)/K,
where K > 0 is some constant.

Note: The normalization constant K is often unknown and difficult
to compute.

@ The Metropolis—Hastings starts with an initial sample, and
generate new samples using a transition probability density q(x,y)
(the proposal distribution).

@ We assume

@ we can evaluate f(z) at every z.
@ we can evaluate g(z,y) at every z,y.

e we can sample from the distribution ¢(z, ).
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Metropolis-Hastings algorithm

The Metropolis—Hastings algorithm: we start with xy such that
f(zg) > 0. Fori=0,...

© Generate a new value y according to q(z, -).

© Compute the “Hastings” ratio:
fWaly, x)

b= @)y

© “Accept” the new sample y with probability min(1, R). If y is
accepted, set x; 1 := y. Otherwise, z;11 = ;.
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