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Standard framework for supervised learning: hypothesis space, loss and risk. Let X be the input space and
Y be the output space, a supervised learning try to learn a function that maps an input to an output based
on example input-output pairs.

Rigorously, given a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn) sampled (independently and
identically) from an unknown distribution PX,Y, a learning algorithm seeks a function h : X → Y , where X
is the input space and Y is the output space and h belong a set H of functions mapping from X to Y (which
we refer to as the hypothesis space).

In order to measure how well a function fits the training data, a loss function L : Y ×Y → R≥0 is defined.
For training example (xi, yi) and a hypothesis h, the loss of predicting the value h(xi) is L(yi, h(xi)). This
pre-defined loss function induces a risk function on H, defined as

R(h) := E(X,Y)∼P[L(Y, h(X))].

For a hypothesis h, R(h) is the expected loss incurred per sample when h is used to make prediction. The
“optimal hypothesis” h∗, whose performance we wish to replicate, is the the minimizer over H of the risk
function R(h).

As mentioned above, an algorithm takes as input a finite sequence of training samples
(x1, y1), (x2, y2), . . . , (xn, yn) and outputs a function from X → Y . The most standard algorithm is the
empirical risk minimizer (ERM), which outputs

ĥn = min
h∈H

Rn(h)

where

Rn(h) =
1
n

n

∑
i=1

L(yi, h(xi))

is the empirical risk.

PAC Learning. The probably approximately correct (PAC) learning model typically states as follows: we say
that ĥn is ε-accurate with probability 1− δ if

P
[

R(ĥn)− inf
h∈H

R(h) > ε

]
< δ.

In other words, we have R(ĥn)− infh∈H R(h) ≤ ε with probability at least (1− δ).
For the ERM, the main idea is that since

Rn(h) =
1
n

n

∑
i=1

L(yi, h(xi)) ≈ E(X,Y)∼P[L(Y, h(X))] = R(h),

minimizing Rn(h) will have a similar effect as minimizing R(h). However, in other to establish that
rigorously, we need to quantify explicitly the event for which Rn(h) is close to R(h) for each hypothesis
h.
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Concentration inequalities. Concentration inequalities provide bounds on how a random variable deviates
from some value (typically, its expected value). In this section, we sketch the main steps to derive a class of
concentration inequalities for bounded random variables.

The underlying idea is to upper-bound a tail probability P[X ≥ t] by controlling the moments of the
random variable X.

Theorem 1 (Markov inequality). For any nonnegative random variable X and ε > 0,

P[X ≥ ε] ≤ E[X]

ε
.

Theorem 2. For any random variable X, ε > 0 and t > 0

P[X ≥ ε] ≤ E[etX ]

etε .

Theorem 3. If random variable X has mean zero and is bounded in [a, b], then for any s > 0,

E[etX ] ≤ exp
(

t2(b− a)2

8

)
.

Theorem 4 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be i.i.d copy of a random variable X ∈ [a, b], and ε > 0,

P
[∣∣∣∣X1 + X2 + . . . + Xn

n
− E[X]

∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− nε2

2(b− a)2

)
.

Proof. We have

P
[

X1 + X2 + . . . + Xn

n
− E[X] ≥ ε

]
= P [(X1 + X2 + . . . + Xn)− E[X1 + X2 + . . . + Xn] ≥ nε]

≤ exp(−tnε)E[et[(X1+X2+...+Xn)−E[X1+X2+...+Xn ]]]

= exp(−tnε)
n

∏
i=1

E[et[Xi−E[Xi ]]]

≤ exp
(
−tnε + n

t2(b− a)2

2

)
Note: We can apply Theorem 3 for Xi − EXi in the bounds aobve because

E[Xi − EXi] = 0 and − (b− a) ≤ Xi − EXi ≤ (b− a).

The quadratic expression (in t) attains maximum value at

t =
ε

(b− a)2 .

Replacing this value of t in the inequality, we deduce that

P
[

X1 + X2 + . . . + Xn

n
− E[X] ≥ ε

]
≤ exp

(
− nε2

2(b− a)2

)
.

Using a similar argument, we also have

P
[

X1 + X2 + . . . + Xn

n
− E[X] ≤ −ε

]
≤ exp

(
− nε2

2(b− a)2

)
.

The combination of those two estimates completes the proof.
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Generalization bound for finite hypothesis space and bounded loss.
Assume that

• the loss function L is bounded, that is

0 ≤ L(y, y′) ≤ c ∀y, y′ ∈ Y

• the hypothesis space is a finite set, that is

H = {h1, h2, . . . , hm}.

Using the Hoeffding’s inequality, for any h ∈ H and ε > 0 we have

P[|Rn(h)− R(h)| ≥ ε] ≤ 2 exp
(
−nε2

2c2

)
.

Thus

P[∃h ∈ H : |Rn(h)− R(h)| ≥ ε] ≤ 2|H| exp
(
−nε2

2c2

)
.

This means that, with probability at least

1− 2|H| exp
(
−nε2

2c2

)
.

we have
R(ĥn)− R(h∗) = [R(ĥn)− Rn(ĥn)] + [Rn(ĥn)− Rn(h∗)] + [Rn(h∗)− R(h∗)] ≤ 2ε

(note that the second term is non-positive by the definition of the ERM).
Thus, for any δ > 0 and ε > 0, by choosing

n =
2c2

ε2 log
(

2|H|
δ

)
then ĥn is ε-accurate with probability 1− δ, i.e.

P
[

R(ĥn)− inf
h∈H

R(h) > 2ε

]
< δ.

Corollary. If we quantify the error in term of number of samples, then

R(ĥn) ≤ R(h∗) +
c√
n

√
8 log

(
2
δ

)
+ 8 log(|H|).


