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We know that for finite hypothesis space and bounded loss, if we quantify the error in term of number of
samples, then

Ry (h) — R(h)| < \;ﬁ\/Zlog ((25) 1 2log(|H]), Vh € H

with probability at least 1 — 4.
What about infinite hypothesis class?

Assumption. In this note, we assume that H is a metric space with distance d defined on it. For ¢ > 0,
we denote by N (e, H,d) the covering number of (H,d); that is, N (€, H,d) is the minimal number of balls of
radius € needed to cover H. We denote by H, a finite subset of H such that H is contained in the union of
balls of radius € and |He| = N (e, H, d).
Note: If H is a dk—dimensional manifold/algebraic surface, then we now that
N(eH,d) = O (e7¥)
Assume further that the loss function L satisfies:

|L(h(x),y) — L(K(x),y)| < Cd(h,i') V,xe X;ye V;h,h e H

Generalization bound using covering number.

We first note that if
n= g lo 2|
T2 0% 6
then the event
IR, (h) — R(h)| <e€,Vh € He
happens with probability at least 1 — 4.
Under this event, consider any h € H, then there exists iy € He such that d(h, hy) < e. This means
IR () = Ry (ho)| < C(h, )
and
|R(h) — R(hg)| < Cd(h, hy).
This implies that
R, (h) —R(h)| < (2C+1)e Vh e H.
We conclude that for alle > 0, § > 0, if

n_glo 2N (e,H,d)
T2 % 5

then
|[Ry,(h) —R(h)| < (2C+1)e Vh e H.

with probability at least 1 — 4.



