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Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural network
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bootstrap + Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation
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Decision trees

Tree-based methods:

Partition the feature space into a set of rectangles.

Fit a simple model (e.g. a constant) in each rectangle.

Conceptually simple yet powerful.

Izenman, 2013, Figure 9.1.
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How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.
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Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T ) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T ).
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The bootstrap

We saw before that decision trees often over�t the data.

We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on

resampling data with replacement.

Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples

by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...

(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the

original data.

Often used to estimate parameter variability (or uncertainty).
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Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.
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Random forests (cont.)

Random forests: Each time a split in a tree is considered, a

random selection of m predictors is chosen as split candidates from

the full set of p predictors.

Typical value for m is
√
p.

We construct T1, . . . , TB trees using that method on bootstrap

samples. The random forest (regression) predictor is

f̂Brf (x) =
1

B

B∑
b=1

Tb(x).

For classi�cation: use majority vote.
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Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.
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Boosting

Bagging

Random forests

Boosting

Main idea: we can combine weak learners into a single strong
learner
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Non-convexity of the hypothesis space
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Moving out of the hypothesis space
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Adaboost
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Gradient descent
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