
Mathematical techniques in data science

Lecture 18: Boosting

March 29th, 2019

Mathematical techniques in data science

Schedule

Week Chapter
1 Chapter 2: Intro to statistical learning
3 Chapter 4: Classification
4 Chapter 9: Support vector machine and kernels
5, 6 Chapter 3: Linear regression
7 Chapter 8: Tree-based methods + Random forest
8
9 Neural network
12 PCA → Manifold learning
11 Clustering: K-means → Spectral Clustering
10 Bootstrap + Bayesian methods + UQ
13 Reinforcement learning/Online learning/Active learning
14 Project presentation

Mathematical techniques in data science

Decision trees

Tree-based methods:

Partition the feature space into a set of rectangles.

Fit a simple model (e.g. a constant) in each rectangle.

Conceptually simple yet powerful.

Izenman, 2013, Figure 9.1.

2/14

How to grow a decision tree?

Regression tree:

Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.

We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we �grow� the

tree?

We need to decide:
1 Which variable to split.
2 Where to split that variable.

6/14

Stopping rules and pruning

Generally, the process is stopped for a given region when there

are less than 5 observations in that region.

Problem with previous methodology:

Likely to over�t the data.

Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (over�ts), and the

prune it (better).

Weakest link pruning:

(a.k.a cost complexity pruning)

Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, de�ne:

Cα(T) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T).

8/14

The bootstrap

We saw before that decision trees often over�t the data.

We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on

resampling data with replacement.

Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples

by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...

(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the

original data.

Often used to estimate parameter variability (or uncertainty).
2/14

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.
3/14

Random forests (cont.)

Random forests: Each time a split in a tree is considered, a

random selection of m predictors is chosen as split candidates from

the full set of p predictors.

Typical value for m is
√
p.

We construct T1, . . . , TB trees using that method on bootstrap

samples. The random forest (regression) predictor is

f̂Brf (x) =
1

B

B∑
b=1

Tb(x).

For classi�cation: use majority vote.
8/14

Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.
10/14

Boosting

Bagging

Random forests

Boosting

Main idea: we can combine weak learners into a single strong
learner

Mathematical techniques in data science

Non-convexity of the hypothesis space

Mathematical techniques in data science

Moving out of the hypothesis space

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Adaboost

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient descent

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

Gradient boosting

Mathematical techniques in data science

