Mathematical techniques in data science

Lecture 18: Boosting

March 29th, 2019

Mathematical techniques in data science

Schedule

Week | Chapter

1 Chapter 2: Intro to statistical learning

3 Chapter 4: Classification

4 Chapter 9: Support vector machine and kernels
56 Chapter 3: Linear regression
7

8

Chapter 8: Tree-based methods + Random forest

9 Neural network

12 PCA — Manifold learning

11 Clustering: K-means — Spectral Clustering

10 Bootstrap + Bayesian methods + UQ

13 Reinforcement learning/Online learning/Active learning
14 Project presentation

Mathematical techniques in data science

Decision trees

Tree-based methods:

@ Partition the feature space into a set of rectangles.

e Fit a simple model (e.g. a constant) in each rectangle.

o Conceptually simple yet powerful.

03

X2

61

R

Ry

R

Ry

lzenman, 2013, Figure 9.1.

02

04

2/14

How to grow a decision tree?

Regression tree:

e Data: y € R"?, X € R"*P.

e Each observation: (y;,x;) € RPTL i=1,... n.

Suppose we have a partition of R? into M regions Ry, ..., Ry,.

We predict the response using a constant on each R;:
m
f@)=> ¢ laer,.
i=1

In order to minimize > (y; — f(z;))?, one needs to choose:
¢ =ave(y; 1 x; € Ry).

How do we determine the regions R;, i.e., how do we “grow” the
tree?
We need to decide:

© Which variable to split.

@ Where to split that variable.
6/14

Stopping rules and pruning

@ Generally, the process is stopped for a given region when there
are less than 5 observations in that region.

Problem with previous methodology:
o Likely to overfit the data.

@ Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and the
prune it (better).

@ Weakest link pruning:

(a-k.a cost complexity pruning)

Let T' C T be a subtree of Tj with |T|

terminal nodes. For a > 0, define:
T

=5 S i—gn) o7

m=1i:x;ERm

Pick a subtree minimizing C, (7).

8/14

The bootstrap

o We saw before that decision trees often overfit the data.

@ We will now discuss techniques that can be used to mitigate that
problem.

Bootstrapping: General statistical method that relies on
resampling data with replacement.

Idea: Given data (y;,z;), i = 1,...,n, construct bootstrap samples
by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(Yiy > Tiy) (yj1) $j1) (Yky» Thy)

(Yins Tiy) (Yjar 2j5) (Ykas Thy)

(Yins Tiy,) (Yjn> Tjn) (Ykos Thy)
@ Each bootstrap sample mimics the statistical properties of the
original data.

e Often used to estimate parameter variability (or uncertainty). ,
2/14

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ~ f(z) for data (y;, z;) € RPFL.
© Construct B € N bootstrap samples.
@ Train the method on the b-th bootstrap sample to get f*b(:c).
© Compute the average of the estimators:

.fbag j§ :E::(f

o Bagging is often used with regression trees.

e Can improve estimators significantly.
Note: Each bootstrap tree will typically involve different features
than the original, and might have a different number of terminal
nodes.
The bagged estimate is the average prediction at = from
these B trees.

For classification: Use a majority vote from the B trees.
3/14

Random forests (co

Random forests: Each time a split in a tree is considered, a
random selection of m predictors is chosen as split candidates from

the full set of p predictors.

e Typical value for m is /p.

@ We construct T1,...,Tp trees using that method on bootstrap
samples. The random forest (regression) predictor is

frf BZTI)

For classification: use majority vote.
8/14

Like bagging, boosting is a general approach that can be applied to many
models. Combines weak learners into a single strong learner.
Boosting: Recursively fit trees to residuals. (Compensate the
shortcoming of previous model.)
Input: (y;,z;) € RPTL i =1,... n. Iitialize f(z) =0, r; = y;.
Forb=1,...,B:

O Fit a tree estimator fb with d splits to the training data.

@ Update the estimator using:

fa) < f@)+ 1 fo(a).
© Update the residuals:
Ty < T — A fb(.’L'Z)
Output: Boosted tree:

~ B A
fl@) =Y M)
=1

Note: A > 0 is a learning rate.
10/14

e Bagging
@ Random forests
e Boosting

Main idea: we can combine weak learners into a single strong
learner

Mathematical techniques in data science

Non-convexity of the hypothesis space

Mathematical techniques in data science

Moving out of the hypothesis space
Hx) = 3 pee(x)
t

H=sign | 0.42 + (.65 +092

Mathematical techniques in data science

Algorithm 10.1 AdaBoost. MI.

1. Inmitialize the observation weights w; = 1/N, i = 1,

o
.1_':

2. Form =1 to M:

(a) Fit a classifier G, () to the training data using weights w;.
(b) Compute
;_.|—] w I(U, # GJi (JIJ’)I

Z?—l Wi

(e¢) Compute a,, = log((1 — errm,)/errm,).

(d) Set w; +— wj - explam - [y # Gm(zi))], i=1,2,...,N.

erT,;, =

3. Output G(x) = sign [S—' | n,.aG,i.(:)

Lam=

Mathematical techniques in data science

Mathematical techniques in data science

D

|
+
+

Mathematical techniques in data science

Mathematical techniques in data science

Mathematical techniques in data science

Mathematical techniques in data science

He) =3 pehi(x)
t

H=sign | 0.42 + (.65 +092

Mathematical techniques in data science

Gradient boosting

w
° Single Stump
<
o
@
5 o
N OO S e e
2
Ll N
P
prg
o
2 4
T T T T T
0 100 200 300 400

Boosting lterations

Mathematical techniques in data science

Gradient boosting

» Invent Adaboost, the first successful boosting algorithm
[Freund et al., 1996, Freund and Schapire, 1997]

» Formulate Adaboost as gradient descent with a special loss
function[Breiman et al., 1998, Breiman, 1999]

» Generalize Adaboost to Gradient Boosting in order to handle
a variety of loss functions
[Friedman et al., 2000, Friedman, 2001]

Mathematical techniques in data science

Gradient descent

Gradient Descent
Minimize a function by moving in the opposite direction of the

gradient.
aJ
9;? = 9,‘ — '()c)_f?,

Figure: Gradient Descent. Source:
http://en.wikipedia.org/wiki/Gradient_descent

Mathematical techniques in data science

Gradient boosting

Boosting: Recursively fit trees to residuals. (Compensate the
shortcoming of previous model.)
Input: (y;,2;) e RPFL i=1,..., n. Initialize f(2) =0, r; = y;.
Forb=1,...,B:

O Fit a tree estimator f? with d splits to the training data.

@ Update the estimator using:

flx) « f(x) + A~ fo(=).
© Update the residuals:

ri i — A fO(xi).
Output: Boosted tree:

B
f@) =S Af ().
=1

Mathematical techniques in data science

Gradient boosting

\ MSE Loss Function
(- F)

Vv

Mathematical techniques in data science

Gradient boosting

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(z) = arg min- Z;l L(yi,).
2. Form =1to M:

(a) Fori=1,2,..., N compute

im of(zi) g,

(b) Fit a regression tree to the targets ry,, giving terminal regions
Rijm, =1.2,...,J0.

(¢) For j =1,2,...,.J,, compute

A."jm — arg H'Eln Z L (y?. fm—l (\rl) + A."} .

&€ Rym

(d] Upd&te fm [-1’} = fm—l.[:r} + Zj]:rll ‘.?'jm‘tr[a‘ € ij}'

3. Output f[:t’} = far(x).

Mathematical techniques in data science

Gradient boosting

sklearn.ensemble : Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection.

User guide: See the Ensemble methods section for further details.
ensemble.AdaBoostClassifier ([...]) An AdaBoost classifier.
ensemble.AdaBoostRegressor ([Dase_estimator, ...]) An AdaBoost regressor.
ensemble.BaggingClassifier ([Dase_estimator, ...]) A Bagging classifier.
ensemble.BaggingRegressor ([base_estimator, ...]) A Bagging regressor.

ensemble.ExtraTreesClassifier ([...]) An extra-trees classifier.

ensemble.ExtraTreesRegressor ([N_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier ([loss, ...]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor ([l0SS, ...]) Gradient Boosting for regression.
ensemble.IsolationForest ([N_estimators, ... Isolation Forest Algorithm
ensemble.RandomForestClassifier ([...]) A random forest classifier.
ensemble.RandomForestRegressor ([...]) A random forest regressor.
ensemble.RandomTreesEmbedding ([...]) An ensemble of totally random trees.
ensemble.VotingClassifier (€Stimators], ...]) Soft Voting/Majority Rule classifier for unfitted estimators.

Mathematical techniques in data science

dmlc
XGBoost eXtreme Gradient Boosting

build | passing | build 'passing | ©) build | passing license | Apache 2.0 | CRAN | 0.82.1 | pypi package |0.82

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It
implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting
(also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major
distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples

License

© Contributors, 2016. Licensed under an Apache-2 license.

Mathematical techniques in data science

Gradient boosting

Unique features of XGBoost

XGBoost is a popular implementation of gradient boosting. Let’s discuss some features of
XGBoost that make it so interesting.

.

Regularization: XGBoost has an option to penalize complex models through both L1
and L2 regularization. Regularization helps in preventing overfitting

Handling sparse data: Missing values or data processing steps like one-hot encoding
make data sparse. XGBoost incorporates a sparsity-aware split finding algorithm to
handle different types of sparsity patterns in the data

Weighted quantile sketch: Most existing tree based algorithms can find the split
points when the data points are of equal weights (using quantile sketch algorithm).
However, they are not equipped to handle weighted data. XGBoost has a distributed
weighted quantile sketch algorithm to effectively handle weighted data

Block structure for parallel learning: For faster computing, XGBoost can make use
of multiple cores on the CPU. This is possible because of a block structure in its
system design. Data is sorted and stored in in-memory units called blocks. Unlike
other algorithms, this enables the data layout to be reused by subsequent iterations,
instead of computing it again. This feature also serves useful for steps like split finding

.

.

.

and column sub-sampling

Cache awareness: In XGBoost, non-continuous memory access is required to get the

gradient statistics by row index. Hence, XGBoost has been designed to make optimal

use of hardware. This is done by allocating internal buffers in each thread, where the

gradient statistics can be stored

« Out-of-core computing: This feature optimizes the available disk space and
maximizes its usage when handling huge datasets that do not fit into memory

Mathematical techniques in data science

.

