MATH 637 - Homework 4

Due: Monday, May 2nd, 11:59PM

Submit your solutions to Canvas as a PDF file. You may scan (or take a good picture of) a handwritten document, but they will be returned ungraded if they are not legible.

You can use any results that have been stated/proven in class.

Question 1

Let X be a non-negative random variable with $E\left[X^{4}\right]=1$. Show that

$$
P[X \geq 2]<0.5
$$

Question 2

Let $X_{1}, X_{2}, \ldots, X_{100}$ be i.i.d copies of a random variable $X \in[-1,1]$ and $E[X]=0$. Denote

$$
S=X_{1}+X_{2}+\ldots+X_{100}
$$

Show that

$$
P[S \geq 50] \leq 0.05
$$

Question 3

Suppose that the data set $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ are generated by the following rules:

- $\left.x_{i}=\left(x_{i}^{(1)}\right), x_{i}^{(2)}\right)$ are chosen uniformly at random on the domain $[-3,3] \times[-3,3]$
- the label y_{i} is computed by

$$
y_{i}=\operatorname{sign}\left(\left(x_{i}^{(2)}\right)^{2}-\left(x_{i}^{(1)}\right)^{3}+2\left(x_{i}^{(1)}\right)-1\right)
$$

Construct a map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{p}$ for some $p>2$ such that the mapped dataset $\left\{\left(x_{1}^{\prime}, y_{1}\right),\left(x_{2}^{\prime}, y_{2}\right), \ldots,\left(x_{n}^{\prime}, y_{n}\right)\right\}$ where

$$
x_{i}^{\prime}=\phi\left(x_{i}\right)
$$

is linearly separable (i.e., separable by a hyperplane in \mathbb{R}^{p}).

