Mathematical techniques in data science

Lecture 5: Nearest neighbors (cont.)

Last lecture: Nearest neighbors

® Very simple idea: Make predictions based on labels of the
nearest training examples

® Applicable to both classification and regression

K-nearest neighbor (K-NN) for classification

® Learning: Store all training examples

® Predict label of x:
® Find the nearest K training examples to x
® Assign the most frequent label to x

New example

* to classify Class A

‘A:_ - Class B
* g KL
’*;, NN
{7 K A AA

\ 1
\\ \\K=3 A ’/ ,‘A
\ ‘__,’A /I A
AY
~ k=7 /’

-~ -

Y-Axis

X-Axis

(Source: kdnuggets.com)

K-nearest neighbor (K-NN) for regression

® |earning: Store all training examples

® Predict label of x:

® Find the nearest K training examples to x
® Assign the average of the K nearest labels to x

housing price

3-NN for regression

55 X
50 /

X
X 51

50+55+51/3=52

(Source: Jeremy Jordan)

total sq. ft

Algorithmic details

Number of neighbors
How to define "near-ness”?
How to find the nearest neighbors?

Non-uniform weights

Nearest Neighbors on scikit-learn

sklearn.neighbors.KNeighborsRegressor

class sklearn.neighbors.
P=2, metric="mir i', metric_p:

Regressor(n_nei , %, weights="uniform’, algorithm="auto’, leaf size=30,
, n_job. , **kwargs) 1

[source]
Regression based on k-nearest neighbors.

The target is i by local ir ion of the targets i of the nearest

in the training set.

Read more in the User Guide.

New in version 0.9.

n_nei sint,
Number of neighbors to use by default for kneighbors queries.

weights : {“uniform’, ‘distance’} or callable, default="uniform”
weight function used in prediction. Possible values:

« ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query
point will have a greater influence than neighbors which are further away.

[callable] : a user-defined function which accepts an array of distances, and returns an array of
the same shape containing the weights.

Uniform weights are used by default.

algorithm : {“auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default="auto’
Algorithm used to compute the nearest neighbors:

« ‘ball_tree’ will use BallTree
'kd_tree' will use KDTree
‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit
method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

Nearest Neighbors Demo

General steps to build ML models
® Get and pre-process data
® Visualize the data (optional)
® Create a model
® Train the model; i.e. call model.fit()
® Predict on test data

e Compute evaluation metrics (accuracy, mean squared error,
etc.)

¢ Visualize the trained model (optional)

Review: Probability/Statistics

® Parameter estimation
® Bias-variance decomposition

e Qverfitting and underfitting

Parameter estimation

® Model: A family of distributions/functions indexed by a vector
of parameters 6

® Parameter estimation/tuning: given data (Z1, 22, ..., Zy),
find 6 that best "fits” (explain) the data

parameter —> sample —> estimator
9 — 1,2 2= 0

Estimate vs estimator

sample — estimator
Zl,ZQ,...,Z,,:> 0

observed data — estimate

21,20,y 2Zn @—> 0

Mean Squared Error

® Measuring error of estimation
0—60] or (6—0)?
® The error of estimation is random

Definition
The mean squared error of an estimator 6 is

E[(9 - 6)’]

Bias-variance decomposition

Theorem
MSE(D) = E[(0 — 0] = V() + (E@) - 0)

Bias-variance decomposition

Mean squared error = variance of estimator -+ (bias)?

Bias-variance decomposition

Low bias High bias
Low f/ﬂ/-\\\\\
variance)

High //((t_
variance L \ @) e /]

Underfit
(high bias)

]

[] ..
oo*o**
* °®
**)

Optimum

Underfiting/Overfitting

Overfit

(high variance)

High training error
High test error

(Source: IBM)

Low training error
Low test error

Low training error
High test error

estimation

error

Underfiting/Overfitting

high bias low bias
low variance high variance

Test error

Training error

=

e — model
underfit overfit complexity

Underfiting/Overfitting

KNN: K=1 KNN: K=100

Nearest neighbors: pros and cons

Pros:
® Simple algorithm
® Easy to implement, no training required
® Can learn complex target function
Cons:
® Prediction is slow

® Don't work well with high-dimensional inputs (e.g., more than
20 features)

