Mathematical techniques in data science

Lecture 6: Logistic Regression



Reminders

Office hours:
* MW 3pm-4pm, Ewing Hall 312
® By appointments

Homework 0: due next Monday EOD
Homework 1: uploaded on Monday, due in 2 weeks

Sign up for group projects by the end of Week 4



Last lecture: Nearest Neighbors Demo

General steps to build ML models
® Get and pre-process data
® Visualize the data (optional)
® Create a model
® Train the model; i.e. call model.fit()
® Predict on test data

e Compute evaluation metrics (accuracy, mean squared error,
etc.)

¢ Visualize the trained model (optional)
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Underfiting/Overfitting

KNN: K=1 KNN: K=100




Nearest neighbours: pros and cons

Pros:
® Simple algorithm
® Easy to implement, no training required
® Can learn complex target function
Cons:
® Prediction is slow

® Don't work well with high-dimensional inputs (e.g., more than
20 features)



Classification: Logistic regression
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Supervised learning
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Learning a function that maps an input to an output based on
example input-output pairs



Supervised learning: Classification

Hand-written digit recognition (MNIST dataset)
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Classification algorithms

Logistic regression
Linear Discriminant Analysis
Support Vector Machines

Nearest neighbours



Linear classification

Linear classification: Decision boundary is a line/hyperplane



Linear classification: Is it worth considering?
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MNIST dataset: projected by PCA



Linear classification: Is it worth considering?

1-SNE Results: MNIST
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Logistic regression

Despite the name “regression”, is a classifier
Only for binary classification
Data point (x,y) where

® x = (xg,Xz,...,Xg) is a vector with d features
® vy is the label (0 or 1)

Logistic regression models Ply = 1|X = x|

Then
Ply=0X=x]=1-Ply =1|X =x]



Logistic regression
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Logistic regression

Linear transform
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Logistic function and logit function

Transformation between (—o0, 00) and [0, 1]
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Logistic regression

Linear transform
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Logistic regression

Model: Given X = x, Y is a Bernoulli random variable with
parameter p(x) = P[Y = 1|X = x] and

logit(p(x)) = Bo + Bix1 + ... + Baxd

for some vector 3 = (Bo, A1, - ., Bq) € RITL,
Goal: Find BA that best "fits” the data



To review

® Probability/Statistics

® |ndependence

® Bernoulli random variables

® Maximum-likelihood (ML) estimation
® Calculus

® Partial derivatives
® Finding critical points of a function



Parameter estimation

e Data: (x1,¥1),(x2,¥2),...,(Xn, ¥n), we have
® For a Bernoulli r.v. with parameter p

PlY =y]=p"(1-p)", ye{01}

e Likelihood of the parameter (probability of the dataset):

L(B) = [ ] p(xi» B) (1 = p(xi, B))*

i=1



Parameter estimation: maximum likelihood

® The log-likelihood can be computed as
((B) = log L()
=Y lvilog p(xi, ) + (1 - yi) log(L - p(xi, 8))]
i=1

® Maximize ¢(/3) to find 8 — the maximum-likelihood method
® The term
—[y log(p) + (1 — y)log(1 - p)]

is known in the field as the log-loss, or the binary
cross-entropy loss



Logistic regression: estimating the parameter

® The optimization needs to be performed by a numerical
optimization method

® Penalties can be added to regularize the problem to avoid
overfitting
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