
Mathematical techniques in data science

Lecture 6: Logistic Regression



Reminders

• Office hours:
• MW 3pm-4pm, Ewing Hall 312
• By appointments

• Homework 0: due next Monday EOD

• Homework 1: uploaded on Monday, due in 2 weeks

• Sign up for group projects by the end of Week 4



Last lecture: Nearest Neighbors Demo

General steps to build ML models

• Get and pre-process data

• Visualize the data (optional)

• Create a model

• Train the model; i.e. call model.fit()

• Predict on test data

• Compute evaluation metrics (accuracy, mean squared error,
etc.)

• Visualize the trained model (optional)



Underfiting/Overfitting

(Source: IBM)



Underfiting/Overfitting



Underfiting/Overfitting



Nearest neighbours: pros and cons

Pros:

• Simple algorithm

• Easy to implement, no training required

• Can learn complex target function

Cons:

• Prediction is slow

• Don’t work well with high-dimensional inputs (e.g., more than
20 features)



Classification: Logistic regression



Supervised learning

Learning a function that maps an input to an output based on
example input-output pairs



Supervised learning: Classification

Hand-written digit recognition (MNIST dataset)



Classification algorithms

• Logistic regression

• Linear Discriminant Analysis

• Support Vector Machines

• Nearest neighbours



Linear classification

Linear classification: Decision boundary is a line/hyperplane



Linear classification: Is it worth considering?

MNIST dataset: projected by PCA



Linear classification: Is it worth considering?

MNIST dataset: projected by t-SNE



Logistic regression

• Despite the name “regression”, is a classifier

• Only for binary classification
• Data point (x, y) where

• x = (x1, x2, . . . , xd) is a vector with d features
• y is the label (0 or 1)

• Logistic regression models P[y = 1|X = x]

• Then
P[y = 0|X = x] = 1− P[y = 1|X = x]



Logistic regression



Logistic regression



Logistic function and logit function

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p



Logistic regression



Logistic regression

• Model: Given X = x, Y is a Bernoulli random variable with
parameter p(x) = P[Y = 1|X = x] and

logit(p(x)) = β0 + β1x1 + . . .+ βdxd

for some vector β = (β0, β1, . . . , βd) ∈ Rd+1.

• Goal: Find β̂ that best ”fits” the data



To review

• Probability/Statistics
• Independence
• Bernoulli random variables
• Maximum-likelihood (ML) estimation

• Calculus
• Partial derivatives
• Finding critical points of a function



Parameter estimation

• Data: (x1, y1), (x2, y2), . . . , (xn, yn), we have

• For a Bernoulli r.v. with parameter p

P[Y = y ] = py (1− p)1−y , y ∈ {0, 1}

• Likelihood of the parameter (probability of the dataset):

L(β) =
n∏

i=1

p(xi , β)yi (1− p(xi , β))1−yi



Parameter estimation: maximum likelihood

• The log-likelihood can be computed as

`(β) = log L(β)

=
n∑

i=1

[yi log p(xi , β) + (1− yi ) log(1− p(xi , β))]

• Maximize `(β) to find β → the maximum-likelihood method

• The term
−[y log(p) + (1− y) log(1− p)]

is known in the field as the log-loss, or the binary
cross-entropy loss



Logistic regression: estimating the parameter

• The optimization needs to be performed by a numerical
optimization method

• Penalties can be added to regularize the problem to avoid
overfitting

max
β
`(β)− 1

C
‖β‖1

or

min
β
−`(β)− 1

C
‖β‖22


