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Lecture 10: SGD and Back-propagation



Feed-forward neural networks (binary classification)



Activation functions



Review: Logistic regression with more than 2 classes

• Suppose now the response can take any of {1, . . . ,K} values

• We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x] = pk(x),
K∑

k=1

pk(x) = 1.

• Model
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Softmax activation



Feed-forward neural networks (multi-class classification)



Feed-forward neural networks

• Structure:
• Graphical representation
• Activation functions
• Loss functions

• Training:
• Stochastic gradient descent
• Back-propagation



Train feed-forward neural networks



Settings

• Data:
(x1, y1), (x2, y2), . . . , (xn, yn)

• Model parameters:

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training: Find the best
value of θ that fits the data



Maximum-likelihood method

• Average log-likelihood

L(θ) =
1

n

n∑
i=1

logP(y = yi |xi , θ)

• Model parameters:

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training: Maximize L(θ)



Cross-entropy loss (log loss)

• Cross-entropy loss = negative log-likelihood:

`(θ) = −L(θ)

• Goal: Minimize `(θ)



One-hot encoding

Convert a categorical value into a binary vector with exactly one
“1” element, and the rest are 0



Loss function for classification: cross-entropy

Note: Here yo,: is the one-hot encoding of the label and po,c is the
predicted probability for the observation o is of class c, respectively



Stochastic gradient descent



Gradient descent



Gradient descent



Stochastic gradient descent

• Recall that our objective function has the form

`(θ) =
1

n

n∑
i=1

L(θ, xi , yi )

• Mini-batch stochastic gradient descent
• randomly shuffle examples in the training set, divide them into

k mini-batches of data of size m
• for each batch Ii (i=1, . . . , k), approximate the empirical risk

by

ˆ̀(θ) =
1

m

∑
j∈Ii

L(θ, xj , yj)

and update θ
θ ← θ − ρ∇ˆ̀(θ)

• Repeat until an approximate minimum is obtained or a
maximum numbers M epochs are done



Stochastic gradient descent: teminology

• Mini-batch stochastic gradient descent
• randomly shuffle examples in the training set, divide them into

k mini-batches of data of size m
• for each batch Ii (i=1, . . . , k), approximate the objective

function by

ˆ̀(θ) =
1

m

∑
j∈Ii

L(θ, xj , yj)

and update θ
θ ← θ − ρ∇ˆ̀(θ)

• Repeat until an approximate minimum is obtained or a
maximum numbers M epochs are done

• Terminology:
• m: batch-size
• ρ: learning rate
• M: number of epochs



Stochastic gradient descent (SGD)



Stochastic gradient descent

• Gradient descent converges to the local minimum, and the
fluctuation is small

• SGD’s fluctuation is large, but enables jumping to new/better
local minima



Escaping local minima



Automatic diffierentiation



Stochastic gradient descent

• The most computationally heavy part in the training of a
neural net is to compute

∂`

∂θi ,j

• Numerical differentiation is not realistic, and symbolic
differentiation is impossible



Automatic differentiation

• Assume that
y = f (g(h(x)))

• Denote x = u0, h(u0) = u1, g(u1) = u2, f (u2) = u3 = y , then

dy

dui
=

dy

dui+1

dui+1

dui



Back-propagation



Back-propagation

Use chain rule to compute ∇`(θ)

∂`

∂b1
=
∂`

∂p
(p) · ∂p

∂h2
(h2,W3, b3) · ∂h2

∂h1
(h1,W1, b1) · ∂h1

∂b1
(x ,W1, b1)



Back-propagation

• One forward pass to evaluate h1, h2, p, `

• One backward pass to compute ∇`(θ)



Feed-forward neural networks



Back-propagation

• Advantage: The cost to compute the partial derivatives with
respect to all parameters are just twice the cost of a forward
evaluations

• Drawback: The functions used to describe the network
(activation functions and loss functions) needs to belong to
the class of functions supported by the computational platform


