Mathematical techniques in data science

Lecture 11: Deep learning with Keras

Feed-forward neural networks

- Structure:
 - Graphical representation
 - Activation functions
 - Loss functions
- Training:
 - Stochastic gradient descent
 - Back-propagation

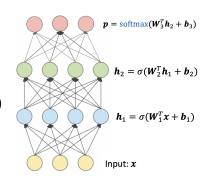
Settings

• Data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Model parameters:

$$\theta = (W_1, b_1, W_2, b_2, \dots, W_L, b_L)$$

• Training: Find the best value of θ that fits the data



One-hot encoding

id	color	One Hot Encoding	id	color_red	color_blue	color_green
1	red		1	1	Θ	Θ
2	blue		2	0	1	Θ
3	green		3	0	Θ	1
4	blue		4	0	1	Θ

Convert a categorical value into a binary vector with exactly one $^{\circ}1^{\circ}$ element, and the rest are 0

Stochastic gradient descent: terminology

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
 - for each batch I_i (i=1, ..., k), approximate the objective function by

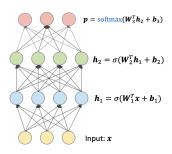
$$\hat{\ell}(\theta) = \frac{1}{m} \sum_{j \in I_i} L(\theta, x_j, y_j)$$

and update $\boldsymbol{\theta}$

$$\theta \leftarrow \theta - \rho \nabla \hat{\ell}(\theta)$$

- Repeat until an approximate minimum is obtained or a maximum numbers M epochs are done
- Terminology:
 - m: batch-size
 - ρ : learning rate
 - M: number of epochs

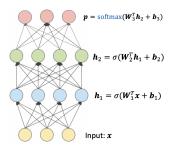
Back-propagation



Use chain rule to compute $\nabla \ell(\theta)$

$$\frac{\partial \ell}{\partial b_1} = \frac{\partial \ell}{\partial p}(p) \cdot \frac{\partial p}{\partial h_2}(h_2, W_3, b_3) \cdot \frac{\partial h_2}{\partial h_1}(h_1, W_1, b_1) \cdot \frac{\partial h_1}{\partial b_1}(x, W_1, b_1)$$

Back-propagation



- One forward pass to evaluate h_1, h_2, p, ℓ
- One backward pass to compute $\nabla \ell(\theta)$

Back-propagation

- Advantage: The cost to compute the partial derivatives with respect to all parameters are just twice the cost of a forward evaluations
- Drawback: The functions used to describe the network (activation functions and loss functions) needs to belong to the class of functions supported by the computational platform

Feed-forward neural networks

- Structure:
 - Graphical representation
 - Activation functions
- Training:
 - Stochastic gradient descent
 - Back-propagation

sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [sour

[source]

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters:

hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,)

The ith element represents the number of neurons in the ith hidden layer.

activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu'
Activation function for the hidden layer.

- 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) = x
- 'logistic', the logistic sigmoid function, returns $f(x) = 1 / (1 + \exp(-x))$.
- 'tanh', the hyperbolic tan function, returns f(x) = tanh(x).
- 'relu', the rectified linear unit function, returns f(x) = max(0, x)

- High level API for deep learning
- More flexible to define network architecture than sklearn

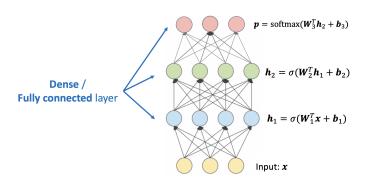
Define network architecture (1)

- Define a network as a Sequential object
- Add layers to it one-by-one

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(50, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

Define network architecture (2)



One-hot encoding

id	color	One Hot Encoding	id	color_red	color_blue	color_green
1	red		1	1	Θ	Θ
2	blue		2	0	1	Θ
3	green		3	0	Θ	1
4	blue		4	0	1	Θ

Labels in Keras are usually encoded as one-hot vectors

Demo: train an MLP using Keras

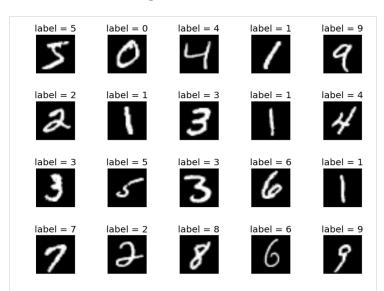
Some intros to computer vision

Computer vision

A field that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs

- Image classification/object recognition
- Object detection
- Image segmentation
- Image generation
- Image style transfer

Image classification



Object detection

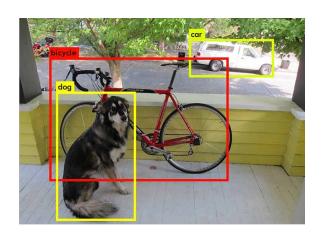


Image segmentation

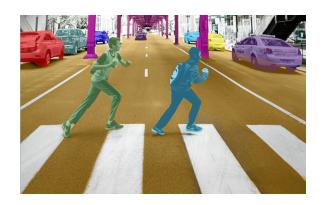
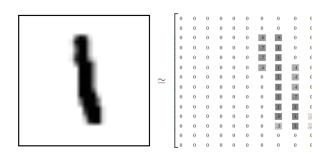


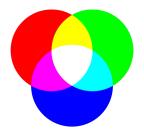
Image generation

Image style transfer

Grayscale image representation

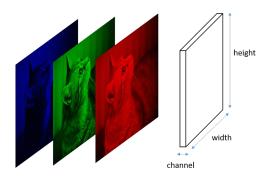


Color image representation



- Use RGB color mode
- Represent a color by 3 values: R (Red) G (Green) B (Blue)
- There are other color modes

Image representation



- An image is an H x W x C matrix: H (height), W (width), C (depth or number of channels)
- Grayscale image: C = 1
- RGB image: C = 3

