
Mathematical techniques in data science

Lecture 14: A short introduction to statistical learning theory
– Hypothesis spaces and loss functions–



Reminders

• Office hours:
• MW 3pm-4pm, Ewing Hall 312
• By appointments

• Homework 2: due 03/21 EOD



Where are we?

• Algorithms
• Intros to classification
• Overfitting and underfiting
• Nearest neighbors
• Logistic regression
• Feed-forward neural networks

• Codings
• Numpy, matplotlib, sklearn
• Reading sklearn documentations
• Pre-process inputs (i.e., numpy.shape())
• Data simulations (by hand or using built-in functions in

sklearn)
• Data splitting
• Train models; making prediction; evaluate models



What’s next?

• Mathematical techniques in data sciences
• A short introduction to statistical learning theory
• Linear regression – regularization and feature selection
• SVM – the kernel trick
• Random forests — boosting and bootstrapping

• Algorithms and learning contexts
• PCA and Manifold learning
• Clustering
• Selected topics



A short introduction to statistical learning theory



Diagram of a typical supervised learning problem

Supervised learning: learning a function that maps an input to an
output based on example input-output pairs



Supervised learning: standard setting

• Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn)
sampled (independently and identically) from an unknown
distribution PX ,Y

• Goal: predict the label of new samples (as accurately as
possible)



Example

• MNIST dataset

• Each image as a vector in x ∈ R256 and the label as a scalar
y ∈ {0, 1, . . . , 9}
• Goal: learn to identify/predict digits (as accurately as

possible)



Supervised learning: standard setting

• Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn)
sampled (independently and identically) from an unknown
distribution PX ,Y

• Goal: predict the label of new samples (as accurately as
possible)
• Question:

• How to make predictions?
• What do you mean by“as accurately as possible?”



Hypothesis space

• Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn)
sampled (independently and identically) from an unknown
distribution PX ,Y

• Goal: a learning algorithm seeks a function h : X → Y, where
X is the input space and Y is the output space

• The function h is an element of some space of possible
functions H, usually called the hypothesis space

• Usually, this hypothesis space can be indexed by some
parameters (often specified by a model or a learning
algorithm)



Hypothesis space: logistic regression

• Two classes: 0 and 1

• x ∈ Rd

• Probability model

pw ,b(x) =
1

1 + e−wT x−b

• Prediction rule hw ,b(x)
• If pw ,b(x) > 0.5, predict hw ,b(x) = 1
• If pw ,b(x) ≤ 0.5, predict hw ,b(x) = 0

• Hypothesis space

H = {hw ,b : w ∈ Rd , b ∈ R}



Loss function

• The function h is an element of some space of possible
functions H, usually called the hypothesis space

• In order to measure how well a function fits the data, a loss
function

L : Y × Y → R≥0

is defined



Loss function: examples

• In order to measure how well a function fits the data, a loss
function

L : Y × Y → R≥0

is defined

• For regression:

L(h(x), y) = [h(x)− y ]2

• For classification:

L(h(x), y) =

{
0, if h(x) = y

1 otherwise



Loss function

• The function h is an element of some space of possible
functions H, usually called the hypothesis space

• In order to measure how well a function fits the data, a loss
function

L : Y × Y → R≥0

is defined

• It its straightforward that we want to have a hypothesis with
minimal loss

• Question: minimal loss on what?



Underfiting/Overfitting



Risk function

• Assumption: The future samples will be obtained from the
same distribution PX ,Y of the training data

• With a pre-defined loss function, the risk function is defined as

R(h) = E(X ,Y )∼P [L(h(X ),Y )]

• The “optimal hypothesis”, denoted by h∗ in this lecture, is the
minimizer over H of the risk function

h∗ = arg min
h∈H

R(h)


