Mathematical techniques in data science

Lecture 14: A short introduction to statistical learning theory
— Hypothesis spaces and loss functions—



Reminders

e Office hours:
* MW 3pm-4pm, Ewing Hall 312
® By appointments

® Homework 2: due 03/21 EOD



Where are we?

e Algorithms
® |ntros to classification
® Qverfitting and underfiting
® Nearest neighbors
® [ ogistic regression
® Feed-forward neural networks
® Codings
Numpy, matplotlib, sklearn
Reading sklearn documentations
Pre-process inputs (i.e., numpy.shape())
Data simulations (by hand or using built-in functions in
sklearn)
Data splitting
Train models; making prediction; evaluate models



What's next?

® Mathematical techniques in data sciences

® A short introduction to statistical learning theory

® Linear regression — regularization and feature selection
® SVM - the kernel trick

® Random forests — boosting and bootstrapping

® Algorithms and learning contexts

® PCA and Manifold learning
® (Clustering
® Selected topics



A short introduction to statistical learning theory
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Diagram of a typical supervised learning problem

new
example
fabeled  machine learning | ,‘;’PrediCtiOH
raining algorithm | rule
examples i
predicted
classification

Supervised learning: learning a function that maps an input to an
output based on example input-output pairs



Supervised learning: standard setting

® Given: a sequence of label data (x1,y1), (x2,¥2), .-, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

® Goal: predict the label of new samples (as accurately as
possible)



Example

e MNIST dataset

Q—2M I e N o
O~ MmAVe oo
QSNMY VY N+ o
ONNM IO NN
Q—~NoT e Nooon
QRN RIYHYN D
L I WEIN PRSI SN N
ONNORNWV-S [~
Q= MT 0 N>
ON T N3 o
ONN P 2L S o
V-NM a0 o N
DM Y YO F o
V—=dm>rho N
QN M T AN NNy

® Each image as a vector in x € R?>® and the label as a scalar

.9}

y €{0,1,..
® Goal: learn to identify/predict digits (as accurately as

possible)



Supervised learning: standard setting

¢ Given: a sequence of label data (x1,y1), (x2,¥2), .-+, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

® Goal: predict the label of new samples (as accurately as
possible)

® Question:

® How to make predictions?
® What do you mean by “as accurately as possible?”



Hypothesis space

Given: a sequence of label data (x1,y1), (x2,¥2) .-, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

Goal: a learning algorithm seeks a function h: X — ), where
X is the input space and ) is the output space

The function h is an element of some space of possible
functions H, usually called the hypothesis space

Usually, this hypothesis space can be indexed by some
parameters (often specified by a model or a learning
algorithm)



Hypothesis space: logistic regression

Two classes: 0 and 1
x e R
Probability model

1
Pw,b(X) = 1tewxb

Prediction rule hy, p(x)
® If pw p(x) > 0.5, predict hy,, p(x) =1
® If pw p(x) < 0.5, predict hy p(x) =0

Hypothesis space

H:{hw,b:weRd,beR}



Loss function

® The function h is an element of some space of possible
functions H, usually called the hypothesis space

® |n order to measure how well a function fits the data, a loss
function

L:Yx)Y —R2O

is defined



Loss function: examples

® |n order to measure how well a function fits the data, a loss
function
L:YxY—RDO

is defined
® For regression:
L(h(x),y) = [h(x) = y]?
® For classification:

0, if h(x)=y
1 otherwise

L(h(x),y) = {



Loss function

The function h is an element of some space of possible
functions H, usually called the hypothesis space

In order to measure how well a function fits the data, a loss
function

L:YxY— RO
is defined

It its straightforward that we want to have a hypothesis with
minimal loss

Question: minimal loss on what?



estimation

error

Underfiting/Overfitting

high bias low bias
low variance high variance

Test error

Training error

=

e — model
underfit overfit complexity



Risk function

® Assumption: The future samples will be obtained from the
same distribution Px y of the training data

® With a pre-defined loss function, the risk function is defined as
R(h) = E(x,v)~p[L(h(X), Y)]

® The “optimal hypothesis”, denoted by h* in this lecture, is the
minimizer over H of the risk function

h* = arg Ir;rg?r_} R(h)



