Mathematical techniques in data science

Lecture 14: A short introduction to statistical learning theory - Hypothesis spaces and loss functions-

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Reminders

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Office hours:
 - MW 3pm-4pm, Ewing Hall 312
 - By appointments
- Homework 2: due 03/21 EOD

Where are we?

Algorithms

- Intros to classification
- Overfitting and underfiting
- Nearest neighbors
- Logistic regression
- Feed-forward neural networks
- Codings
 - Numpy, matplotlib, sklearn
 - Reading sklearn documentations
 - Pre-process inputs (i.e., numpy.shape())
 - Data simulations (by hand or using built-in functions in sklearn)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Data splitting
- Train models; making prediction; evaluate models

What's next?

- Mathematical techniques in data sciences
 - A short introduction to statistical learning theory
 - Linear regression regularization and feature selection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- SVM the kernel trick
- Random forests boosting and bootstrapping
- Algorithms and learning contexts
 - PCA and Manifold learning
 - Clustering
 - Selected topics

A short introduction to statistical learning theory

(ロ)、(型)、(E)、(E)、 E) の(()

Diagram of a typical supervised learning problem

Supervised learning: learning a function that maps an input to an output based on example input-output pairs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Supervised learning: standard setting

Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Goal: predict the label of new samples (as accurately as possible)

Example

MNIST dataset

• Each image as a vector in $x \in \mathbb{R}^{256}$ and the label as a scalar $y \in \{0, 1, \dots, 9\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goal: learn to identify/predict digits (as accurately as possible)

Supervised learning: standard setting

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: predict the label of new samples (as accurately as possible)
- Question:
 - How to make predictions?
 - What do you mean by "as accurately as possible?"

Hypothesis space

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: a learning algorithm seeks a function $h : \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The function *h* is an element of some space of possible functions \mathcal{H} , usually called the *hypothesis space*
- Usually, this hypothesis space can be indexed by some parameters (often specified by a model or a learning algorithm)

Hypothesis space: logistic regression

- Two classes: 0 and 1
- $x \in \mathbb{R}^d$
- Probability model

$$p_{w,b}(x) = \frac{1}{1 + e^{-w^T x - b}}$$

- Prediction rule h_{w,b}(x)
 - If $p_{w,b}(x) > 0.5$, predict $h_{w,b}(x) = 1$
 - If $p_{w,b}(x) \leq 0.5$, predict $h_{w,b}(x) = 0$
- Hypothesis space

$$\mathcal{H} = \{h_{w,b} : w \in \mathbb{R}^d, b \in \mathbb{R}\}$$

Loss function

- The function *h* is an element of some space of possible functions \mathcal{H} , usually called the *hypothesis space*
- In order to measure how well a function fits the data, a *loss function*

$$L:\mathcal{Y} imes\mathcal{Y}
ightarrow\mathbb{R}^{\geq0}$$

is defined

Loss function: examples

• In order to measure how well a function fits the data, a *loss function*

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

• For regression:

$$L(h(x), y) = [h(x) - y]^2$$

• For classification:

$$L(h(x), y) = \begin{cases} 0, & \text{if } h(x) = y \\ 1 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Loss function

- The function *h* is an element of some space of possible functions \mathcal{H} , usually called the *hypothesis space*
- In order to measure how well a function fits the data, a *loss function*

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is defined

- It its straightforward that we want to have a hypothesis with minimal loss
- Question: minimal loss on what?

Underfiting/Overfitting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Risk function

- Assumption: The future samples will be obtained from the same distribution $P_{X,Y}$ of the training data
- With a pre-defined loss function, the risk function is defined as

$$R(h) = E_{(X,Y)\sim P}[L(h(X),Y)]$$

• The "optimal hypothesis", denoted by h^* in this lecture, is the minimizer over \mathcal{H} of the risk function

$$h^* = \arg\min_{h \in \mathcal{H}} R(h)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ