Mathematical techniques in data science

Lecture 15: Hoeffding's inequality

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What's next?

- Mathematical techniques in data sciences
 - A short introduction to statistical learning theory
 - Linear regression regularization and feature selection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- SVM the kernel trick
- Random forests boosting and bootstrapping
- Algorithms and learning contexts
 - PCA and Manifold learning
 - Clustering
 - Selected topics

Supervised learning: standard setting

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: predict the label of new samples (as accurately as possible)
- Question:
 - How to make predictions?
 - What do you mean by "as accurately as possible?"

Hypothesis space

- Given: a sequence of label data (x1, y1), (x2, y2), ..., (xn, yn) sampled (independently and identically) from an unknown distribution PX,Y
- Goal: a learning algorithm seeks a function $h : \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space

- The function *h* is an element of some space of possible functions \mathcal{H} , usually called the *hypothesis space*
- Usually, this hypothesis space can be indexed by some parameters (often specified by a model or a learning algorithm)

Hypothesis space: logistic regression

- Two classes: 0 and 1
- $x \in \mathbb{R}^d$
- Probability model

$$p_{w,b}(x) = \frac{1}{1 + e^{-w^T x - b}}$$

- Prediction rule h_{w,b}(x)
 - If $p_{w,b}(x) > 0.5$, predict $h_{w,b}(x) = 1$
 - If $p_{w,b}(x) \leq 0.5$, predict $h_{w,b}(x) = 0$
- Hypothesis space

$$\mathcal{H} = \{h_{w,b} : w \in \mathbb{R}^d, b \in \mathbb{R}\}$$

Loss function

• In order to measure how well a function fits the data, a *loss function*

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

• For regression:

$$L(h(x), y) = [h(x) - y]^2$$

• For classification:

$$L(h(x), y) = \begin{cases} 0, & \text{if } h(x) = y \\ 1 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Loss function

- The function *h* is an element of some space of possible functions \mathcal{H} , usually called the *hypothesis space*
- In order to measure how well a function fits the data, a *loss function*

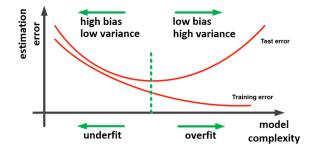
$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is defined

- It its straightforward that we want to have a hypothesis with minimal loss
- Question: minimal loss on what?

Underfiting/Overfitting



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Risk function

- Assumption: The future samples will be obtained from the same distribution $P_{X,Y}$ of the training data
- With a pre-defined loss function, the risk function is defined as

$$R(h) = E_{(X,Y)\sim P}[L(h(X),Y)]$$

• The "optimal hypothesis", denoted by h^* in this lecture, is the minimizer over \mathcal{H} of the risk function

$$h^* = \arg\min_{h \in \mathcal{H}} R(h)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Empirical risk

• Since *P* is unknown, the simplest approach is to approximate the risk function by the empirical risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x_i), y_i)$$

Rationale: The law of large number – If the random variables Z₁, Z₂,..., Z_n are drawn independently from the same distribution P_Z, then

$$\frac{Z_1+Z_2+\ldots Z_n}{n}\approx E[Z]$$

ERM

• Empirical risk minimizer (ERM): minimizer of the empirical risk function

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x_i), y_i)$$

- Rationale: $R_n(h) \approx R(h)$
- In this lecture, we use the notation \hat{h}_n to denote the ERM
- We hope that

$$R(\hat{h}_n) \approx R(h^*)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

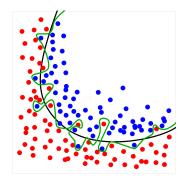
• Note: \hat{h}_n is random, while h^* is a fixed hypothesis

Failure of ERM

We hope that

 $R(\hat{h}_n) \approx R(h^*),$

but in general, this might not be true if the hypothesis space $\ensuremath{\mathcal{H}}$ is too large



Failure of ERM

We hope that

$$R(\hat{h}_n) \approx R(h^*),$$

but in general, this might not be true if the hypothesis space $\ensuremath{\mathcal{H}}$ is too large

- Question: How large is too large?
- We need to be able to quantify/control the difference between $R(\hat{h}_n)$ and $R(h^*)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Modes of estimations

Analysis

$$\lim_{n\to\infty}x_n=x$$

• Numerical analysis

$$\|x_n - x\| = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \quad \text{or} \quad \|x_n - x\| \le \frac{C}{\sqrt{n}}$$

PAC (Probably Approximately Correct) learning

$$\|x_n-x\|\leq C(\delta)\frac{1}{\sqrt{n}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with probability at least $1-\delta$

PAC learning

Definition

The probably approximately correct (PAC) learning model typically states as follows: we say that \hat{h}_n is ϵ -accurate with probability $1 - \delta$ if

$$P\left[R(\hat{h}_n)-R(h^*)>\epsilon\right]<\delta.$$

In other words, we have $R(\hat{h}_n) - R(h^*) \leq \epsilon$ with probability at least $(1 - \delta)$.

Probability inequalities

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Markov inequality

Theorem (Markov inequality)

For any nonnegative random variable X and $\epsilon > 0$,

$$P[X \ge \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Markov inequality

Theorem For any random variable X, $\epsilon > 0$ and t > 0

$$P[X \ge \epsilon] \le rac{\mathbb{E}[e^{tX}]}{e^{t\epsilon}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exponential moment of bounded random variables

Theorem

If random variable X has mean zero and is bounded in [a, b], then for any s > 0,

$$\mathbb{E}[e^{tX}] \leq \exp\left(rac{t^2(b-a)^2}{8}
ight)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let $X_1, X_2, ..., X_n$ be i.i.d copy of a random variable $X \in [a, b]$, and $\epsilon > 0$,

$$P\left[\frac{X_1+X_2+\ldots+X_n}{n}-E[X]\geq\epsilon
ight]\leq\exp\left(-\frac{n\epsilon^2}{2(b-a)^2}
ight).$$

Corollary:

$$P\left[\left|\frac{X_1+X_2+\ldots+X_n}{n}-E[X]\right|\geq\epsilon\right]\leq 2\exp\left(-\frac{n\epsilon^2}{2(b-a)^2}\right).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @