Mathematical techniques in data science

Shrinkage methods



Reminders

® Homework 4 on the course's webpage. Due in 2 weeks.

® Check in with groups about projects this week

® |I'm giving a talk at the Math Department’s colloquium this
Friday (3:30pm, 104 Gore Hall).
Topic: Feature selection for non-linear models: (phylogenetic)
trees and (deep neural) networks
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Linear model: settings

® Linear model
y = 80 4 gMx® 4 g xR o g x(P) 4 ¢

® Equivalent to

® | east squares regression

BLs = min||Y — X33



Trade-off: complexity vs. interpretability

Linear model

y = g x® 4 g@x@ 1 g x(P) 4 ¢

® Higher values of p lead to more complex model — increases
prediction power/accuracy

® Higher values of p make it more difficult to interpret the
model: It is often the case that some or many of the variables
regression model are in fact not associated with the response



Moderns settings

Linear model

y =800 4 gMx® 4 g@x(2) 1 gl xP) 4 ¢

® it is often the case that n < p
® requires supplementary assumptions (e.g. sparsity)
® can still build good models with very few observations.



ly regularization

£y regularization

P
A0 : 2
B = min 1Y = XB[[2 + A Z 150140
i=1
where A > 0 is a parameter
pay a fixed price A for including a given variable into the model

variables that do not significantly contribute to reducing the
error are excluded from the model (i.e., 5; = 0)

problem: difficult to solve (combinatorial optimization).
Cannot be solved efficiently for a large number of variables.



¢, (Tikhonov) regularization

Ridge regression/ Tikhonov regularization

BRIDCE — min [ — XB|3 + AZ [BV]?

j=1

where A > 0 is a parameter

shrinks the coefficients by imposing a penalty on their size
penalty is a smooth function.

easy to solve (solution can be written in closed form)

can be used to regularize a rank deficient problem (n < p)



¢, (Tikhonov) regularization

9 (Y — X813 + AllBI1?)
op

= 2XT (Y — XB3) + 2\3

® The critical point satisfies
(XTX+ A =XTY

* Note: (XX 4 Al) is positive definite, and thus invertible

® Thus
BRIDGE — (XTX 4+ )\I)_leY



¢, (Tikhonov) regularization

BARIDGE _ (XTX+ )\l)_leY

® When A > 0, the estimator is defined even when n < p

® When A = 0 and n > p, we recover the usual least squares
solution



The Lasso
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Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator)

1%
flasso — min ¥ - XI5+ 2D 18V
j=1

As with ridge regression, the lasso shrinks the coefficient
estimates towards zero

However, the /1 penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when X is
sufficiently large

the lasso performs variable selection — models are easier to
interpret



Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

mﬂw—xm%

p
subject to Z 189 <'s
j=1



Lasso: alternative form

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
the RSS.

gions, |81| + |82| < s and 37 + 37 < s, while the red ellipses are the contours of



Lasso

The Lasso:

1%
flasso — min [ — XB|5+ 2> |89

j=1
More “global” approach to selecting variables compared to
previously discussed greedy approaches
Can be seen as a convex relaxation of the 3% problem

No closed form solution, but can solved efficiently using
convex optimization methods.

Performs well in practice

Very popular. Active area of research



Other shrinkage methods

® /4 regularization (g > 0):

P
3 = min Y - XB[5+ A [BY)

j=1

g=0.5
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Contours of constant value of Ej |B;|? for given values of g.



Other shrinkage methods

® FElastic net

p
A o9 + (1 - )Y
j=1

g=132 a = 0.2

|
L Elastic Met

FIGURE 3.13. Contours of constant value of EJ. B;1% for g = 1.2 (left plot),
and the elastic-net penalty 3 (B +(1—a)|B;]) for & = 0.2 (right plot). Although
visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the g = 1.2 penalty does not.




Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

mﬂw—xm%

p
subject to Z 189 <'s
j=1



Lasso: alternative form

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
the RSS.

gions, |81| + |82| < s and 37 + 37 < s, while the red ellipses are the contours of



When the lasso fails
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When the lasso fails
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Lasso: model consistency
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Model selection consistency lasso

® Note: Model consistency of lasso
® Further readings:

® Zhao and Yu (2006)
® Wainright (2009)
® Sparsity, the lasso, and friends (Ryan Tibshirani)



Settings

® We start with the simple linear regression problem
y = XM 4 g@XA) L ¢ e~ N(0,0?)

® Sparsity: assume that the data is generated using the “true”
vector of parameters 3* = (5*(1), 0).

e We assume that E[XM] = E[X®)] = 0.



Matrix form

® we observe a dataset (x1,y1), (x2,¥2)s .- (Xn, ¥n)

® use the same notations as in the previous lectures

Xl(l) X§2)

Y = |2 X=1|.. ..



Goal

The lasso estimator solves the optimization problem
A o1
B = min SIY = X8I+ A(18]| +5).
We want to investigate the conditions under which we can verify

that . A
sign(B) = sign(5*M) and B® =0



Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition

We say that a vector s € RP is a subgradient for the ¢1-norm
evaluated at § € RP, written as s € 9||3]| if for i=1,...,p we
have

() — sign(ﬂ(i)) if ﬁ(i) #0 and s;€[-1,1] otherwise.



Properties of lasso solutions

Theorem

(a) A vector A solve the lasso program if and only if there exists a
2 € 0||5|| such that

XT(Y-=XB)=X2=0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual
feasibility condition
2] < 1

then any lasso solution 3 satisfies 5(2) = 0.

(c) Under the condition of part (b), if X1 0, then {3 is the
unique lasso solution.



The primal-dual witness method.
The primal-dual witness (PDW) method consists of constructing a
pair of (3, Z) according to the following steps:

® First, we obtain B(l) by solving the restricted lasso problem

B(l): min E

jmin 3 IY =X + (157D,

Choose a subgradient (1) € R for the ¢1-norm evaluated at
A1)

* Second, we solve for a vector #(2) satisfying equation (0.1),
and check whether or not the dual feasibility condition
|(2)] < 1 is satisfied

® Third, we check whether the sign consistency condition

2 = sign(p*M)

is satisfied.



PDW

® This procedure is not a practical method for solving the
£1-regularized optimization problem, since solving the
restricted problem in Step 1 requires knowledge about the
sparsity of 5*

® Rather, the utility of this constructive procedure is as a proof
technique: it succeeds if and only if the lasso has a optimal
solution with the correct signed support.



A more detailed computation

We note that the matrix form of equation (0.1) can be written as
XO)T (Y — xW M) — x5y — x2(1) = ¢

X7 (Y — xW M) — x(2)52)y — x2() = ¢

To simplify the notation, we denote

Cj = XV [XV]



Step 1

e we find A1) and #(!) that satisfies
XW)T (Y — x® M) — xz(1 =0

® Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

5D = sign(*M) and Y = CHIXWTY - Asign(3*D)).
This is acceptable as long as (1) € §|3(1)|. That is,

sign(51) = sign(5*V)



Step 2

® Step 2: N
X7y — x®3M) - Az =0

® Choose

We want [#(2)] < 1.



Conditions

In principle, we want two conditions:
e sign(58* 1)) = sign(5*M) + A)

where

A = CH(IXD]Te — Asign(*V))))

e |22)| <1 where

50 = %[x@)]T(x(l)A +o)



Zero-noise setting

® we assume that the observations are collected with no noise
(e =0).
® Then
A = —Citasign(6*M)

and

52 — _TlczlA = Go1 C7tsign(8* M)

e Conditions

® Mutual incoherence: |Co Ci7t| < 1.
® Minimum signal: |3*M)| > AC;!



Co-linearity

® Mutual incoherence: |C21Cfll\ < 1.
® Recall that

Cip = [x(l)]T[X(Z)] _ in(l)xi(Z)
® When n is large
1 (T x(2) 1) x(@)
~Ciz— E ([x 171X ]) — Cov(XD, x@)

since E[XM] = E[X®] = 0.



Conditions

e Mutual incoherence: ]CglCl_ll\ <1
The condition roughly means that the covariance between the
variables X(1) and X2 are less than the variance of X(1)
* Minimum signal: |3*(M| > \C;*
Since
%Cll — Var(X(l)),

this means that when n — oo, we needs

An
— =0

n



Noisy setting

In principle, we want two conditions:

o sign(5*W) = sign(5*M) + A)
where
A = CH([XM]e - Asign(5*D)))

e |22)| <1 where
50 = %[X(Z)]T(X(l)A +e)

® \We want an upper bound on

[XM]Te  and[X®)]Te



Properties of Gaussian random variables

In principle, we want two conditions:

o [X(l)]Te is a Gaussian random variable with mean 0 and
standard deviation o|| X

® Thus, there exists a universal constant C such that

XM Te| < CU\/nVar(X(l)) log ((15>

with probability at least 1 — §



General settings

Without loss of generality, assume B = (Bf, ..., B}, B}, 1, B3)" where B} # 0 for j=1,...q
and B} =0 for j =g+1,...,p. Let Bf}, = (B},-,By)" and Blyy = (B 10 Bp). Now write Xn(1)
and X, (2) as the first ¢ and last p — g columns of X, respectively and let C" = ix,,"‘x,,. By setting
Ch = %Xn(l)fxn(l)v 7= ixn(Z)’Xn(Z), Ch= ﬁx,,(l)’x,,(z) and C3; = %Xn(z)fxn(l)- C" can
then be expressed in a block-wise form as follows:

A
c"=( i ,1,2).
C21 22

Assuming CY, is invertible, we define the following Irrepresentable Conditions
Strong Irrepresentable Condition. There exists a positive constant vector

€3, (CTI)_ISign(ﬂ?U)‘ <1l-nm,

where 1 isa p— g by 1 vector of 1's and the inequality holds element-wise.
Weak Irrepresentable Condition.

|651(C'111)_1318n(ﬁ?1))| <1,



