Mathematical techniques in data science

Shrinkage methods

Reminders

- Homework 4 on the course's webpage. Due in 2 weeks.
- Check in with groups about projects this week
- I'm giving a talk at the Math Department's colloquium this Friday (3:30pm, 104 Gore Hall).
Topic: Feature selection for non-linear models: (phylogenetic) trees and (deep neural) networks

Settings

$Y \in \mathbb{R}^{n \times 1}, \quad X \in \mathbb{R}^{n \times(p+1)}$

$$
Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right] \quad X=\left[\begin{array}{ccccc}
1 & \mid & \mid & \ldots & \mid \\
\ldots & x^{(1)} & x^{(2)} & \ldots & x^{(p)} \\
1 & \mid & \mid & \ldots & \mid
\end{array}\right]
$$

Linear model: settings

- Linear model

$$
Y=\beta^{(0)}+\beta^{(1)} X^{(1)}+\beta^{(2)} X^{(2)}+\ldots \beta^{(p)} X^{(p)}+\epsilon
$$

- Equivalent to

$$
\mathbf{Y}=\mathbf{X} \beta, \quad \beta=\left[\begin{array}{c}
\beta^{(0)} \\
\beta^{(1)} \\
\ldots \\
\beta^{(p)}
\end{array}\right]
$$

- Least squares regression

$$
\hat{\beta}^{L S}=\min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}
$$

Trade-off: complexity vs. interpretability

Linear model

$$
Y=\beta^{(1)} X^{(1)}+\beta^{(2)} X^{(2)}+\ldots \beta^{(p)} X^{(p)}+\epsilon
$$

- Higher values of p lead to more complex model \rightarrow increases prediction power/accuracy
- Higher values of p make it more difficult to interpret the model: It is often the case that some or many of the variables regression model are in fact not associated with the response

Moderns settings

Linear model

$$
Y=\beta^{(0)}+\beta^{(1)} X^{(1)}+\beta^{(2)} X^{(2)}+\ldots \beta^{(p)} X^{(p)}+\epsilon
$$

- it is often the case that $n \ll p$
- requires supplementary assumptions (e.g. sparsity)
- can still build good models with very few observations.

ℓ_{0} regularization

- ℓ_{0} regularization

$$
\hat{\beta}^{0}=\min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{i=1}^{p} \mathbf{1}_{\beta^{(i)} \neq 0}
$$

where $\lambda>0$ is a parameter

- pay a fixed price λ for including a given variable into the model
- variables that do not significantly contribute to reducing the error are excluded from the model (i.e., $\beta_{i}=0$)
- problem: difficult to solve (combinatorial optimization). Cannot be solved efficiently for a large number of variables.

ℓ_{2} (Tikhonov) regularization

- Ridge regression/ Tikhonov regularization

$$
\hat{\beta}^{R I D G E}=\min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left[\beta^{(j)}\right]^{2}
$$

where $\lambda>0$ is a parameter

- shrinks the coefficients by imposing a penalty on their size
- penalty is a smooth function.
- easy to solve (solution can be written in closed form)
- can be used to regularize a rank deficient problem ($n<p$)

ℓ_{2} (Tikhonov) regularization

$$
\frac{\partial\left(\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda\|\beta\|^{2}\right)}{\partial \beta}=2 \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} \beta)+2 \lambda \beta
$$

- The critical point satisfies

$$
\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \beta=\mathbf{X}^{T} \mathbf{Y}
$$

- Note: $\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)$ is positive definite, and thus invertible
- Thus

$$
\hat{\beta}^{R I D G E}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

ℓ_{2} (Tikhonov) regularization

$$
\hat{\beta}^{R I D G E}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

- When $\lambda>0$, the estimator is defined even when $n<p$
- When $\lambda=0$ and $n>p$, we recover the usual least squares solution

The Lasso

Lasso

- The Lasso (Least Absolute Shrinkage and Selection Operator)

$$
\hat{\beta}^{\text {lasso }}=\min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left|\beta^{(j)}\right|
$$

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero
- However, the ℓ_{1} penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when λ is sufficiently large
- the lasso performs variable selection \rightarrow models are easier to interpret

Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

$$
\begin{aligned}
& \min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} \\
& \text { subject to } \sum_{j=1}^{p}\left|\beta^{(j)}\right| \leq s
\end{aligned}
$$

Lasso: alternative form

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq s$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq s$, while the red ellipses are the contours of the RSS.

Lasso

- The Lasso:

$$
\hat{\beta}^{\text {lasso }}=\min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left|\beta^{(j)}\right|
$$

- More "global" approach to selecting variables compared to previously discussed greedy approaches
- Can be seen as a convex relaxation of the $\hat{\beta}^{0}$ problem
- No closed form solution, but can solved efficiently using convex optimization methods.
- Performs well in practice
- Very popular. Active area of research

Other shrinkage methods

- ℓ_{q} regularization $(q \geq 0)$:

$$
\hat{\beta}=\min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left[\beta^{(j)}\right]^{q}
$$

FIGURE 3.12. Contours of constant value of $\sum_{j}\left|\beta_{j}\right|^{q}$ for given values of q.

Other shrinkage methods

- Elastic net

$$
\lambda \sum_{j=1}^{p} \alpha\left[\beta^{(j)}\right]^{2}+(1-\alpha)\left|\beta^{(j)}\right|
$$

FIGURE 3.13. Contours of constant value of $\sum_{j}\left|\beta_{j}\right|^{q}$ for $q=1.2$ (left plot), and the elastic-net penalty $\sum_{j}\left(\alpha \beta_{j}^{2}+(1-\alpha)\left|\beta_{j}\right|\right)$ for $\alpha=0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the $q=1.2$ penalty does not.

Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

$$
\begin{aligned}
& \min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} \\
& \text { subject to } \sum_{j=1}^{p}\left|\beta^{(j)}\right| \leq s
\end{aligned}
$$

Lasso: alternative form

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq s$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq s$, while the red ellipses are the contours of the RSS.

When the lasso fails

When the lasso fails

Lasso: model consistency

Model selection consistency lasso

- Note: Model consistency of lasso
- Further readings:
- Zhao and Yu (2006)
- Wainright (2009)
- Sparsity, the lasso, and friends (Ryan Tibshirani)

Settings

- We start with the simple linear regression problem

$$
Y=\beta^{(1)} X^{(1)}+\beta^{(2)} X^{(2)}+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Sparsity: assume that the data is generated using the "true" vector of parameters $\beta^{*}=\left(\beta^{*(1)}, 0\right)$.
- We assume that $E\left[X^{(1)}\right]=E\left[X^{(2)}\right]=0$.

Matrix form

- we observe a dataset $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- use the same notations as in the previous lectures

$$
\mathbf{Y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
x_{1}^{(1)} & x_{1}^{(2)} \\
\cdots & \cdots \\
x_{n}^{(1)} & x_{n}^{(2)}
\end{array}\right]
$$

Goal

The lasso estimator solves the optimization problem

$$
\hat{\beta}=\min _{\beta} \frac{1}{2}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda\left(\left|\beta^{(1)}\right|+\left|\beta^{(2)}\right|\right)
$$

We want to investigate the conditions under which we can verify that

$$
\operatorname{sign}\left(\hat{\beta}^{(1)}\right)=\operatorname{sign}\left(\beta^{*(1)}\right) \quad \text { and } \quad \hat{\beta}^{(2)}=0
$$

Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition

We say that a vector $s \in \mathbb{R}^{p}$ is a subgradient for the ℓ_{1}-norm evaluated at $\beta \in \mathbb{R}^{p}$, written as $s \in \partial\|\beta\|$ if for $i=1, \ldots, p$ we have

$$
s^{(i)}=\operatorname{sign}\left(\beta^{(i)}\right) \quad \text { if } \beta^{(i)} \neq 0 \quad \text { and } s_{i} \in[-1,1] \quad \text { otherwise. }
$$

Properties of lasso solutions

Theorem

(a) A vector $\hat{\beta}$ solve the lasso program if and only if there exists a $\hat{z} \in \partial\|\hat{\beta}\|$ such that

$$
\begin{equation*}
\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \hat{\beta})-\lambda \hat{z}=0 \tag{0.1}
\end{equation*}
$$

(b) Suppose that the subgradient vector satisfies the strict dual feasibility condition

$$
\left|\hat{z}^{(2)}\right|<1
$$

then any lasso solution $\tilde{\beta}$ satisfies $\tilde{\beta}^{(2)}=0$.
(c) Under the condition of part (b), if $\mathbf{X}^{(1)} \neq 0$, then $\hat{\beta}$ is the unique lasso solution.

The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of $(\tilde{\beta}, \tilde{z})$ according to the following steps:

- First, we obtain $\tilde{\beta}^{(1)}$ by solving the restricted lasso problem

$$
\tilde{\beta}^{(1)}=\min _{\beta=\left(\beta^{(1)}, 0\right)} \frac{1}{2}\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2}+\lambda\left(\left|\beta^{(1)}\right|\right)
$$

Choose a subgradient $\tilde{z}^{(1)} \in \mathbb{R}$ for the ℓ_{1}-norm evaluated at $\tilde{\beta}^{(1)}$

- Second, we solve for a vector $\tilde{z}^{(2)}$ satisfying equation (0.1), and check whether or not the dual feasibility condition $\left|\tilde{z}^{(2)}\right|<1$ is satisfied
- Third, we check whether the sign consistency condition

$$
\tilde{z}^{(1)}=\operatorname{sign}\left(\beta^{*(1)}\right)
$$

is satisfied.

PDW

- This procedure is not a practical method for solving the ℓ_{1}-regularized optimization problem, since solving the restricted problem in Step 1 requires knowledge about the sparsity of β^{*}
- Rather, the utility of this constructive procedure is as a proof technique: it succeeds if and only if the lasso has a optimal solution with the correct signed support.

A more detailed computation

We note that the matrix form of equation (0.1) can be written as

$$
\begin{aligned}
& {\left[\mathbf{X}^{(1)}\right]^{T}\left(\mathbf{Y}-\mathbf{X}^{(1)} \beta^{(1)}-\mathbf{X}^{(2)} \beta^{(2)}\right)-\lambda \hat{z}^{(1)}=0} \\
& {\left[\mathbf{X}^{(2)}\right]^{T}\left(\mathbf{Y}-\mathbf{X}^{(1)} \beta^{(1)}-\mathbf{X}^{(2)} \beta^{(2)}\right)-\lambda \hat{z}^{(2)}=0}
\end{aligned}
$$

To simplify the notation, we denote

$$
C_{i j}=\left[\mathbf{X}^{(i)}\right]^{T}\left[\mathbf{X}^{(j)}\right]
$$

Step 1

- we find $\tilde{\beta}^{(1)}$ and $\tilde{z}^{(1)}$ that satisfies

$$
\left[\mathbf{X}^{(1)}\right]^{T}\left(\mathbf{Y}-\mathbf{X}^{(1)} \tilde{\beta}^{(1)}\right)-\lambda \tilde{z}^{(1)}=0
$$

- Moreover, to make sure that the sign consistency in Step 3 is satisfied, we impose that

$$
\tilde{z}^{(1)}=\operatorname{sign}\left(\beta^{*(1)}\right) \quad \text { and } \quad \tilde{\beta}^{(1)}=C_{11}^{-1}\left(\left[\mathbf{X}^{(1)}\right]^{T} \mathbf{Y}-\lambda \operatorname{sign}\left(\beta^{*(1)}\right)\right) .
$$

This is acceptable as long as $\tilde{z}^{(1)} \in \partial\left|\tilde{\beta}^{(1)}\right|$. That is,

$$
\operatorname{sign}\left(\tilde{\beta}^{(1)}\right)=\operatorname{sign}\left(\beta^{*(1)}\right)
$$

Step 2

- Step 2:

$$
\left[\mathbf{X}^{(2)}\right]^{T}\left(\mathbf{Y}-\mathbf{X}^{(1)} \tilde{\beta}^{(1)}\right)-\lambda \tilde{z}^{(2)}=0
$$

- Choose

$$
\tilde{z}^{(2)}=\frac{1}{\lambda}\left[\mathbf{X}^{(2)}\right]^{T}\left(\mathbf{Y}-\mathbf{X}^{(1)} \tilde{\beta}^{(1)}\right)
$$

We want $\left|\tilde{z}^{(2)}\right|<1$.

Conditions

In principle, we want two conditions:

- $\operatorname{sign}\left(\beta^{*(1)}\right)=\operatorname{sign}\left(\beta^{*(1)}+\Delta\right)$
where

$$
\left.\Delta=C_{11}^{-1}\left(\left[\mathbf{X}^{(1)}\right]^{T} \epsilon-\lambda \operatorname{sign}\left(\beta^{*(1)}\right)\right)\right)
$$

- $\left|\tilde{z}^{(2)}\right|<1$ where

$$
\tilde{z}^{(2)}=\frac{1}{\lambda}\left[\mathbf{X}^{(2)}\right]^{T}\left(\mathbf{X}^{(1)} \Delta+\epsilon\right)
$$

Zero-noise setting

- we assume that the observations are collected with no noise $(\epsilon=0)$.
- Then

$$
\Delta=-C_{11}^{-1} \lambda \operatorname{sign}\left(\beta^{*(1)}\right)
$$

and

$$
\tilde{z}^{(2)}=\frac{-1}{\lambda} C_{21} \Delta=C_{21} C_{11}^{-1} \operatorname{sign}\left(\beta^{*(1)}\right)
$$

- Conditions
- Mutual incoherence: $\left|C_{21} C_{11}^{-1}\right|<1$.
- Minimum signal: $\left|\beta^{*(1)}\right|>\lambda C_{11}^{-1}$

Co-linearity

- Mutual incoherence: $\left|C_{21} C_{11}^{-1}\right|<1$.
- Recall that

$$
C_{12}=\left[\mathbf{X}^{(1)}\right]^{T}\left[\mathbf{X}^{(2)}\right]=\sum_{i} x_{i}^{(1)} x_{i}^{(2)}
$$

- When n is large

$$
\frac{1}{n} C_{12} \rightarrow E\left(\left[X^{(1)}\right]^{T}\left[X^{(2)}\right]\right)=\operatorname{Cov}\left(X^{(1)}, X^{(2)}\right)
$$

since $E\left[X^{(1)}\right]=E\left[X^{(2)}\right]=0$.

Conditions

- Mutual incoherence: $\left|C_{21} C_{11}^{-1}\right|<1$.

The condition roughly means that the covariance between the variables $X^{(1)}$ and $X^{(2)}$ are less than the variance of $X^{(1)}$

- Minimum signal: $\left|\beta^{*(1)}\right|>\lambda C_{11}^{-1}$

Since

$$
\frac{1}{n} C_{11} \rightarrow \operatorname{Var}\left(X^{(1)}\right)
$$

this means that when $n \rightarrow \infty$, we needs

$$
\frac{\lambda_{n}}{n} \rightarrow 0
$$

Noisy setting

In principle, we want two conditions:

- $\operatorname{sign}\left(\beta^{*(1)}\right)=\operatorname{sign}\left(\beta^{*(1)}+\Delta\right)$ where

$$
\left.\Delta=C_{11}^{-1}\left(\left[\mathbf{X}^{(1)}\right]^{T} \epsilon-\lambda \operatorname{sign}\left(\beta^{*(1)}\right)\right)\right)
$$

- $\left|\tilde{z}^{(2)}\right|<1$ where

$$
\tilde{z}^{(2)}=\frac{1}{\lambda}\left[\mathbf{X}^{(2)}\right]^{T}\left(\mathbf{X}^{(1)} \Delta+\epsilon\right)
$$

- We want an upper bound on

$$
\left[\mathbf{X}^{(1)}\right]^{T} \epsilon \quad \text { and }\left[\mathbf{X}^{(2)}\right]^{T} \epsilon
$$

Properties of Gaussian random variables

In principle, we want two conditions:

- $\left[\mathbf{X}^{(1)}\right]^{T} \epsilon$ is a Gaussian random variable with mean 0 and standard deviation $\sigma\left\|\mathbf{X}^{(1)}\right\|_{2}$
- Thus, there exists a universal constant C such that

$$
\left|\left[\mathbf{X}^{(1)}\right]^{T} \epsilon\right| \leq C \sigma \sqrt{n \operatorname{Var}\left(X^{(1)}\right) \log \left(\frac{1}{\delta}\right)}
$$

with probability at least $1-\delta$

General settings

Without loss of generality, assume $\beta^{n}=\left(\beta_{1}^{n}, \ldots, \beta_{q}^{n}, \beta_{q+1}^{n}, \ldots \beta_{p}^{n}\right)^{T}$ where $\beta_{j}^{n} \neq 0$ for $j=1, . ., q$ and $\beta_{j}^{n}=0$ for $j=q+1, \ldots, p$. Let $\beta_{(1)}^{n}=\left(\beta_{1}^{n}, \ldots, \beta_{q}^{n}\right)^{T}$ and $\beta_{(2)}^{n}=\left(\beta_{q+1}^{n}, \ldots, \beta_{p}^{n}\right)$. Now write $\mathbf{X}_{\mathbf{n}}(1)$ and $\mathbf{X}_{\mathrm{n}}(2)$ as the first q and last $p-q$ columns of \mathbf{X}_{n} respectively and let $C^{n}=\frac{1}{n} \mathbf{X}_{\mathrm{n}}{ }^{T} \mathbf{X}_{\mathrm{n}}$. By setting $C_{11}^{n}=\frac{1}{n} \mathbf{X}_{\mathrm{n}}(1)^{\prime} \mathbf{X}_{\mathrm{n}}(1), C_{22}^{n}=\frac{1}{n} \mathbf{X}_{\mathrm{n}}(2)^{\prime} \mathbf{X}_{\mathrm{n}}(2), C_{12}^{n}=\frac{1}{n} \mathbf{X}_{\mathrm{n}}\left(\mathbf{1}^{\prime} \mathbf{X}_{\mathrm{n}}(\mathbf{2})\right.$ and $C_{21}^{n}=\frac{1}{n} \mathbf{X}_{\mathrm{n}}(2)^{\prime} \mathbf{X}_{\mathrm{n}}(1) . C^{n}$ can then be expressed in a block-wise form as follows:

$$
C^{n}=\left(\begin{array}{ll}
C_{11}^{n} & C_{12}^{n} \\
C_{21}^{n} & C_{22}^{n}
\end{array}\right) .
$$

Assuming C_{11}^{n} is invertible, we define the following Irrepresentable Conditions Strong Irrepresentable Condition. There exists a positive constant vector η

$$
\left|C_{21}^{n}\left(C_{11}^{n}\right)^{-1} \operatorname{sign}\left(\beta_{(1)}^{n}\right)\right| \leq 1-\eta,
$$

where $\mathbf{1}$ is a $p-q$ by 1 vector of 1 's and the inequality holds element-wise.
Weak Irrepresentable Condition.

$$
\left|C_{21}^{n}\left(C_{11}^{n}\right)^{-1} \operatorname{sign}\left(\beta_{(1)}^{n}\right)\right|<\mathbf{1},
$$

