Mathematical techniques in data science

Shrinkage methods

(ロ)、(型)、(E)、(E)、 E) のQ(()

Reminders

- Homework 4 on the course's webpage. Due in 2 weeks.
- Check in with groups about projects this week
- I'm giving a talk at the Math Department's colloquium this Friday (3:30pm, 104 Gore Hall).
 Topic: Feature selection for non-linear models: (phylogenetic) trees and (deep neural) networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Settings

$$Y \in \mathbb{R}^{n \times 1}, \quad X \in \mathbb{R}^{n \times (p+1)}$$
$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & | & | & \cdots & | \\ \dots & x^{(1)} & x^{(2)} & \cdots & x^{(p)} \\ 1 & | & | & \cdots & | \end{bmatrix}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Linear model: settings

• Linear model

$$Y = \beta^{(0)} + \beta^{(1)} X^{(1)} + \beta^{(2)} X^{(2)} + \dots \beta^{(p)} X^{(p)} + \epsilon$$

• Equivalent to

• Least squares regression

$$\hat{\beta}^{LS} = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2$$

Trade-off: complexity vs. interpretability

Linear model

$$Y = \beta^{(1)} X^{(1)} + \beta^{(2)} X^{(2)} + \dots \beta^{(p)} X^{(p)} + \epsilon$$

- Higher values of p lead to more complex model → increases prediction power/accuracy
- Higher values of *p* make it more difficult to interpret the model: It is often the case that some or many of the variables regression model are in fact not associated with the response

Moderns settings

Linear model

$$Y = \beta^{(0)} + \beta^{(1)} X^{(1)} + \beta^{(2)} X^{(2)} + \dots \beta^{(p)} X^{(p)} + \epsilon$$

- it is often the case that $n \ll p$
- requires supplementary assumptions (e.g. sparsity)
- can still build good models with very few observations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ℓ_0 regularization

• ℓ_0 regularization

$$\hat{\beta}^0 = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{i=1}^p \mathbf{1}_{\beta^{(i)} \neq 0}$$

where $\lambda > 0$ is a parameter

- pay a fixed price λ for including a given variable into the model
- variables that do not significantly contribute to reducing the error are excluded from the model (i.e., $\beta_i = 0$)
- problem: difficult to solve (combinatorial optimization).
 Cannot be solved efficiently for a large number of variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ℓ_2 (Tikhonov) regularization

Ridge regression / Tikhonov regularization

$$\hat{\beta}^{\text{RIDGE}} = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{j=1}^{p} [\beta^{(j)}]^2$$

where $\lambda > 0$ is a parameter

- shrinks the coefficients by imposing a penalty on their size
- penalty is a smooth function.
- easy to solve (solution can be written in closed form)
- can be used to regularize a rank deficient problem (n < p)

ℓ_2 (Tikhonov) regularization

$$\frac{\partial \left(\|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|^2 \right)}{\partial \beta} = 2\mathbf{X}^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\beta) + 2\lambda\beta$$

• The critical point satisfies

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})\beta = \mathbf{X}^{\mathsf{T}}\mathbf{Y}$$

• Note: $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$ is positive definite, and thus invertible

Thus

$$\hat{\beta}^{RIDGE} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

ℓ_2 (Tikhonov) regularization

$$\hat{\beta}^{\textit{RIDGE}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

- When $\lambda > 0$, the estimator is defined even when n < p
- When \u03c6 = 0 and n > p, we recover the usual least squares solution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Lasso

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator)

$$\hat{eta}^{\textit{lasso}} = \min_eta \| \mathbf{Y} - \mathbf{X}eta \|_2^2 + \lambda \sum_{j=1}^p |eta^{(j)}|$$

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero
- However, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when λ is sufficiently large
- the lasso performs variable selection \rightarrow models are easier to interpret

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

$$\begin{split} \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 \\ \text{subject to } \sum_{j=1}^p |\beta^{(j)}| \leq s \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lasso: alternative form

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

Lasso

The Lasso:

$$\hat{eta}^{\textit{lasso}} = \min_{eta} \|\mathbf{Y} - \mathbf{X}eta\|_2^2 + \lambda \sum_{j=1}^{p} |eta^{(j)}|$$

- More "global" approach to selecting variables compared to previously discussed greedy approaches
- Can be seen as a convex relaxation of the \hat{eta}^0 problem
- No closed form solution, but can solved efficiently using convex optimization methods.
- Performs well in practice
- Very popular. Active area of research

Other shrinkage methods

• ℓ_q regularization $(q \ge 0)$:

$$\hat{\beta} = \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \sum_{j=1}^{p} [\beta^{(j)}]^q$$

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_j|^q$ for given values of q.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Other shrinkage methods

Elastic net

$$\lambda \sum_{j=1}^{p} \alpha [\beta^{(j)}]^2 + (1-\alpha) |\beta^{(j)}|$$

FIGURE 3.13. Contours of constant value of $\sum_j |\beta_j|^q$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_j (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

$$\begin{split} \min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 \\ \text{subject to } \sum_{j=1}^p |\beta^{(j)}| \leq s \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lasso: alternative form

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

When the lasso fails

When the lasso fails

Lasso: model consistency

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Model selection consistency lasso

- Note: Model consistency of lasso
- Further readings:
 - Zhao and Yu (2006)
 - Wainright (2009)
 - Sparsity, the lasso, and friends (Ryan Tibshirani)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Settings

We start with the simple linear regression problem

$$Y = \beta^{(1)} X^{(1)} + \beta^{(2)} X^{(2)} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Sparsity: assume that the data is generated using the "true" vector of parameters β^{*} = (β^{*(1)}, 0).
- We assume that $E[X^{(1)}] = E[X^{(2)}] = 0$.

Matrix form

- we observe a dataset $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- use the same notations as in the previous lectures

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} \\ \cdots & \cdots \\ x_n^{(1)} & x_n^{(2)} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Goal

The lasso estimator solves the optimization problem

$$\hat{\beta} = \min_{\beta} \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|_{2}^{2} + \lambda(|\beta^{(1)}| + |\beta^{(2)}|).$$

We want to investigate the conditions under which we can verify that

$$\mathit{sign}(\hat{eta}^{(1)}) = \mathit{sign}(eta^{*(1)})$$
 and $\hat{eta}^{(2)} = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition

We say that a vector $s \in \mathbb{R}^p$ is a subgradient for the ℓ_1 -norm evaluated at $\beta \in \mathbb{R}^p$, written as $s \in \partial \|\beta\|$ if for i = 1, ..., p we have

 $s^{(i)} = sign(\beta^{(i)})$ if $\beta^{(i)} \neq 0$ and $s_i \in [-1, 1]$ otherwise.

Properties of lasso solutions

Theorem

(a) A vector $\hat{\beta}$ solve the lasso program if and only if there exists a $\hat{z} \in \partial \|\hat{\beta}\|$ such that

$$\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) - \lambda \hat{z} = 0$$
 (0.1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(b) Suppose that the subgradient vector satisfies the strict dual feasibility condition

 $|\hat{z}^{(2)}| < 1$

then any lasso solution $\tilde{\beta}$ satisfies $\tilde{\beta}^{(2)} = 0$.

(c) Under the condition of part (b), if $\mathbf{X}^{(1)} \neq 0$, then $\hat{\beta}$ is the unique lasso solution.

The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of $(\tilde{\beta}, \tilde{z})$ according to the following steps:

• First, we obtain $\tilde{\beta}^{(1)}$ by solving the restricted lasso problem

$$ilde{eta}^{(1)} = \min_{eta = (eta^{(1)}, 0)} rac{1}{2} \| \mathbf{Y} - \mathbf{X} eta \|_2^2 + \lambda(|eta^{(1)}|).$$

Choose a subgradient $\tilde{z}^{(1)} \in \mathbb{R}$ for the $\ell_1\text{-norm}$ evaluated at $\tilde{\beta}^{(1)}$

- Second, we solve for a vector $\tilde{z}^{(2)}$ satisfying equation (0.1), and check whether or not the dual feasibility condition $|\tilde{z}^{(2)}| < 1$ is satisfied
- Third, we check whether the sign consistency condition

$$\widetilde{z}^{(1)} = sign(eta^{*(1)})$$

is satisfied.

- This procedure is not a practical method for solving the ℓ_1 -regularized optimization problem, since solving the restricted problem in Step 1 requires knowledge about the sparsity of β^*
- Rather, the utility of this constructive procedure is as a proof technique: it succeeds if and only if the lasso has a optimal solution with the correct signed support.

A more detailed computation

We note that the matrix form of equation (0.1) can be written as $[\mathbf{X}^{(1)}]^{T}(\mathbf{Y} - \mathbf{X}^{(1)}\beta^{(1)} - \mathbf{X}^{(2)}\beta^{(2)}) - \lambda \hat{z}^{(1)} = 0$ $[\mathbf{X}^{(2)}]^{T}(\mathbf{Y} - \mathbf{X}^{(1)}\beta^{(1)} - \mathbf{X}^{(2)}\beta^{(2)}) - \lambda \hat{z}^{(2)} = 0$

To simplify the notation, we denote

$$C_{ij} = [\mathbf{X}^{(i)}]^T [\mathbf{X}^{(j)}]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Step 1

• we find $\tilde{\beta}^{(1)}$ and $\tilde{z}^{(1)}$ that satisfies

$$[\mathbf{X}^{(1)}]^{T}(\mathbf{Y} - \mathbf{X}^{(1)} \tilde{eta}^{(1)}) - \lambda \tilde{z}^{(1)} = 0$$

 Moreover, to make sure that the sign consistency in Step 3 is satisfied, we impose that

$$\tilde{z}^{(1)} = \textit{sign}(\beta^{*(1)}) \quad \text{and} \quad \tilde{\beta}^{(1)} = C_{11}^{-1}([\mathbf{X}^{(1)}]^{\mathsf{T}}\mathbf{Y} - \lambda\textit{sign}(\beta^{*(1)})).$$

This is acceptable as long as $\tilde{z}^{(1)} \in \partial |\tilde{\beta}^{(1)}|$. That is,

$$sign(\tilde{\beta}^{(1)}) = sign(\beta^{*(1)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Step 2

• Step 2:
$$[\mathbf{X}^{(2)}]^T (\mathbf{Y} - \mathbf{X}^{(1)} \tilde{\beta}^{(1)}) - \lambda \tilde{z}^{(2)} = 0$$

• Choose

$$ilde{z}^{(2)} = rac{1}{\lambda} [\mathbf{X}^{(2)}]^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}^{(1)} \tilde{eta}^{(1)}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We want $|\tilde{z}^{(2)}| < 1.$

Conditions

In principle, we want two conditions:

•
$$sign(\beta^{*(1)}) = sign(\beta^{*(1)} + \Delta)$$

where

$$\Delta = C_{11}^{-1}([\mathbf{X}^{(1)}]^{T} \epsilon - \lambda \operatorname{sign}(\beta^{*(1)})))$$

• $|\widetilde{z}^{(2)}| < 1$ where

$$ilde{z}^{(2)} = rac{1}{\lambda} [\mathbf{X}^{(2)}]^T (\mathbf{X}^{(1)} \Delta + \epsilon)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zero-noise setting

- we assume that the observations are collected with no noise $(\epsilon = 0).$
- Then

$$\Delta = -C_{11}^{-1}\lambda sign(\beta^{*(1)})$$

and

$$\tilde{z}^{(2)} = \frac{-1}{\lambda} C_{21} \Delta = C_{21} C_{11}^{-1} sign(\beta^{*(1)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Conditions
 - Mutual incoherence: $|C_{21}C_{11}^{-1}| < 1$. Minimum signal: $|\beta^{*(1)}| > \lambda C_{11}^{-1}$

Co-linearity

- Mutual incoherence: $|C_{21}C_{11}^{-1}| < 1$.
- Recall that

$$C_{12} = [\mathbf{X}^{(1)}]^T [\mathbf{X}^{(2)}] = \sum_i x_i^{(1)} x_i^{(2)}$$

• When *n* is large

$$\frac{1}{n}C_{12} \to E\left([X^{(1)}]^T[X^{(2)}]\right) = Cov(X^{(1)}, X^{(2)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

since $E[X^{(1)}] = E[X^{(2)}] = 0$.

Conditions

- Mutual incoherence: |C₂₁C₁₁⁻¹| < 1. The condition roughly means that the covariance between the variables X⁽¹⁾ and X⁽²⁾ are less than the variance of X⁽¹⁾
- Minimum signal: $|\beta^{*(1)}| > \lambda C_{11}^{-1}$ Since

$$\frac{1}{n}C_{11} \rightarrow Var(X^{(1)}),$$

this means that when $n \to \infty$, we needs

$$\frac{\lambda_n}{n} \to 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Noisy setting

In principle, we want two conditions:

• $sign(\beta^{*(1)}) = sign(\beta^{*(1)} + \Delta)$ where

$$\Delta = C_{11}^{-1}([\mathbf{X}^{(1)}]^{T} \epsilon - \lambda \operatorname{sign}(\beta^{*(1)})))$$

•
$$| ilde{z}^{(2)}| < 1$$
 where

$$ilde{z}^{(2)} = rac{1}{\lambda} [\mathbf{X}^{(2)}]^{\mathcal{T}} (\mathbf{X}^{(1)} \Delta + \epsilon)$$

• We want an upper bound on

$$[\mathbf{X}^{(1)}]^{\mathcal{T}} \epsilon$$
 and $[\mathbf{X}^{(2)}]^{\mathcal{T}} \epsilon$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Properties of Gaussian random variables

In principle, we want two conditions:

- $[\mathbf{X}^{(1)}]^T \epsilon$ is a Gaussian random variable with mean 0 and standard deviation $\sigma \|\mathbf{X}^{(1)}\|_2$
- Thus, there exists a universal constant C such that

$$|[\mathbf{X}^{(1)}]^{\mathsf{T}}\epsilon| \leq C\sigma \sqrt{nVar(X^{(1)})\log\left(rac{1}{\delta}
ight)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with probability at least $1-\delta$

General settings

Without loss of generality, assume $\beta^n = (\beta_1^n, ..., \beta_q^n, \beta_{q+1}^n, ..., \beta_p^n)^T$ where $\beta_j^n \neq 0$ for j = 1, ..., qand $\beta_j^n = 0$ for j = q + 1, ..., p. Let $\beta_{(1)}^n = (\beta_1^n, ..., \beta_q^n)^T$ and $\beta_{(2)}^n = (\beta_{q+1}^n, ..., \beta_p^n)$. Now write $\mathbf{X}_n(1)$ and $\mathbf{X}_n(2)$ as the first q and last p - q columns of \mathbf{X}_n respectively and let $C^n = \frac{1}{n} \mathbf{X}_n^T \mathbf{X}_n$. By setting $C_{11}^n = \frac{1}{n} \mathbf{X}_n(1)' \mathbf{X}_n(1), C_{22}^n = \frac{1}{n} \mathbf{X}_n(2)' \mathbf{X}_n(2), C_{12}^n = \frac{1}{n} \mathbf{X}_n(1)' \mathbf{X}_n(2)$ and $C_{21}^n = \frac{1}{n} \mathbf{X}_n(2)' \mathbf{X}_n(1)$. C^n can then be expressed in a block-wise form as follows:

$$C^n = \left(\begin{array}{cc} C_{11}^n & C_{12}^n \\ C_{21}^n & C_{22}^n \end{array}
ight).$$

Assuming C_{11}^n is invertible, we define the following Irrepresentable Conditions Strong Irrepresentable Condition. There exists a positive constant vector η

$$|C_{21}^n(C_{11}^n)^{-1}\operatorname{sign}(\beta_{(1)}^n)| \le 1 - \eta,$$

where 1 is a p-q by 1 vector of 1's and the inequality holds element-wise. Weak Irrepresentable Condition.

 $|C_{21}^n(C_{11}^n)^{-1}\operatorname{sign}(\beta_{(1)}^n)| < \mathbf{1},$