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Feature selection for r li dels: (phylogenetic) trees and (deep neural) networks
Feature selection, the process of selecting a subset of relevant features (variables, predictors) for use in model
construction, is one of the most important steps toward model interpretation. While the literature on feature
selection for linear models is extensive, its counterpart for strongly non-linear models is less developed and
many questions from both theoretical and practical viewpoints are left unexplored.

In this talk, | will discuss some of my recent works in the context of feature selection where the model of interest
is strongly non-linear, unidentifiable, and singular. The contents of the talk are illustrated through two distinct
but related examples: the construction of multifurcating evolutionary trees, and the selection of significant
features for deep neural networks. | aim to (1) provide a quick look into the issues arising in those application
contexts that make theoretical analyses and practical implementations of selectors more challenging and (2)
highlight some of the open mathematical questions required to address those issues.




Tree-based methods

® Partition the feature space into a set of rectangles

e Fit a simple model (e.g. a constant) in each rectangle

® Conceptually simple yet powerful
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Tree-based methods

Advantages:
® Often mimics human decision-making process (e.g. doctor
examining patient).
® Very easy to explain and interpret.
® Can handle both regression and classification problems.
Disadvantage: Basic implementation is generally not
competitive compared to other methods.

However, by aggregating many decision trees and using other
variants, one can improve the performance significantly.

Such techniques may lead to state-of-the-art models.
However, in doing so, one loses the easy interpretability of
decision trees.



Decision trees

To simplify, we will only consider binary decision trees.
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Top Left: Not binary. Top Right: binary.

ESL, Figure 9.2

Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.



How to grow a decision tree?

Regression tree:

o Data: y € R”, X € R™*P,

o Each observation: (y;,z;) € RPHL, i=1,... n.

Suppose we have a partition of R? into M regions Ry,..., Ry,.

We predict the response using a constant on each R;:
m
f(ilf) = Zci : 11:€R¢-
i=1

In order to minimize Y"1 ; (y; — f(2;))?, one needs to choose:
& =ave(y; 1 x; € Ry).

How do we determine the regions R;, i.e., how do we “grow” the
tree?
We need to decide:

@ Which variable to split.

@ Where to split that variable.



How to grow a decision tree?

e Finding a (globally) optimal tree is generally computationally
infeasible.
o We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
seR.
Define the two half-planes:
Ri(j,s) :={zx € RP : z; < s}, Ry(j,s) :={z € RP : z; > s}.

We choose j, s to minimize

. . L 2 . L 2

min | min Y wi-a)’+ mig > (i—e)
z;€R1(j,3) z;€R2(j,5)

@ The determination of the splitting point s can be done very

quickly.

@ Hence, determining the best pair (34, s) is feasible.

Repeat the same process to each block.



Stoping and pruning

@ Generally, the process is stopped for a given region when there
are less than 5 observations in that region.

Problem with previous methodology:
o Likely to overfit the data.

o Can lead to poor prediction error.
Pruning the tree. Strategy: Grow a large tree (overfits), and the
prune it (better).

@ Weakest link pruning:
(a-k.a cost complexity pruning)

Let T' C Tp be a subtree of T with |T|
terminal nodes. For o > 0, define:

||
Ca(T) =), Y, Wi—ir,)+e 7). |
m=14i:z;ERm

Pick a subtree minimizing C,(T).



Stoping and pruning

Pick a subtree T' C Ty minimizing:

T
ColD) =3 > (i—ir.) +a|T|.
m=14:z,ERm,

(Here, §r,, =average response for observations in R,,.)
@ « is a tuning parameter.
o Trade-off between fit of the model, and tree complexity.
o Choose a using cross-validation.

Once a has been chosen by CV, use whole dataset to find the tree
corresponding to that value.



Classification trees

@ So far, we discussed regression trees (continuous output).

@ We can easily modify the methodology to predict a categorical
output.

@ We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box R; to
minimize the sum of squares in that region:

min (y; — c)*.
ceR
T, ER;
As a result, we choose:
. 1
Ci = —— k
] N, Yk
TLER;

where NN; denotes the number of observations in R;.



Classification trees

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

R 1
Dik = F E 1ylERi-
i
T1ER;

We then classify the observations in node i using a majority vote:

k(%) := argmax pj.
k

Different measures are commonly used to determine how good a
given partition is (and how to split a given partition):
@ Misclassification error: N% ExleRi Ly k) = 1 — Dik(i)-
.. K . A K
@ Gini index: > 11 Pik(l — Pix) =1 — > 1 D2
(Probability that a randomly chosen point is incorrectly classified.)

© Entropy: — i, pir log pik.
(Measure of “disorder” in a given category.)



Examples

Let us focus on the top box.

o (Gini index) Error from classifying according to proportions:

P(error) = P(error|green)P(green) + P(error|blue)P(blue) + P(error|red)P(red)
=3/7-4)T+6/7-1/7+5/7-2/7=4/7.

o (Entropy) The probability distribution associated to the top box:

(4/7,2/7,1/7).

Entropy = —(4/7) logy(4/7) — (2/7) logy(2/7) — (1/7) logy(1/7) ~ 1.38.

Best case possible: (1,0,0),(0,1,0),(0,0,1). Entropy = 0.

Worst case possible (1/3,1/3,1/3). Entropy = 1.58.



