Mathematical techniques in data science

Lecture 33: Principal component analysis (PCA)



Topics

® By problems:

® (lassification
® Regression e B .
. . meta-level techniques:
® Manifold learning y o q
e Clustering ® Regularization

® Kernel methods
® By methods: ® Boosting and

® Classical regression-based bootstrapping
methods

® Tree-based methods

® Network-based methods



Diagram of a typical supervised learning problem
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Supervised learning: learning a function that maps an input to an
output based on example input-output pairs



Unsupervised learning

® Unsupervised learning
® |earning an unlabelled dataset: we observe a vector of
measurements x; but no associated response Y(/)
® searching for indirect hidden structures, patterns or features to
analyze the data

® Problems:

® Manifold learning
® (Clustering
® Anomoly detection



Low dimensional structures in data

® high-dimensional data often has a low-rank structure

® Question: how can we discover low dimensional structures in
data?



Manifold learning

® |earning geometric and topological structures of
high-dimensional manifolds (smooth surfaces)

¢ learning the low-dimensional approximation (or embedding) to
visualize the dataset

® |earning the mapping from high-dimensional manifold to its
low-dimensional embedding



Manifold learning: methods

Principal component analysis

Multi-dimensional scaling (MDS)

Locally linear embedding (LLE)

Spectral embedding

t-distributed Stochastic Neighbor Embedding (t-SNE)



Principal component analysis

Problem: How can we discover low dimensional structures in data?

@ Principal components analysis: construct projections of the data
that capture most of the variability in the data.

@ Provides a low-rank approximation to the data.

o Can lead to a significant dimensionality reduction.
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PCA: first component
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PCA: second component
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PCA: formulation

We have a random vector X

with mean 0 and population variance-covariance matrix
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PCA: formulation

Consider the linear combinations
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PCA: formulation

Let X € R"*P

We think of X as n observations of a random vector
(X(l),X(2), . ,X(p)) € RP

Suppose each column has mean 0

We want to find a linear combination
B Xx® 4 3R x (@) 4 4 gle) x(p)

with maximum variance.
(Intuition: we look for a direction where the data varies the
most.)



PCA

® |n practice, we don't know the covariance matrix
¥ = E[XTX], and we need to approximate that by

s =XTX
® \We want to solve

w() = arg max wiw'
lwll=1

® Note that

n
> i, W) = [ Xw TP = wXTXwT = wEw’
i=1



PCA: first component

® We solve
w) = arg max wiw'
lwll=1
® Known result:
max wAw' = Amax

where Anmax is the largest eigenvalue of A, and the equality is
obtained if w is an eigenvector corresponding to Amax



Proof

Let A € RP*P be a symmetric (or Hermitian) matrix. The Rayleigh
quotient is defined by

e’ Az (Az, )
2Te — (x,r)

R(A,x) =

) (IEpra:#Opxl)'

Observations:
O If Az = Az with ||z||2 = 1, then R(A,z) = A. Thus,

sup R(A, x) > Amax(A4).
z#0

@ Let {\i,...,)\,} denote the eigenvalues of A, and let

{v1,...,vp} C RP be an orthonormal basis of eigenvectors of
.02
Az =3" 6;v;, then R(A,z) = 2'5%1*521.
It follows that sup R(A, 7) < Amax(A).
z#0

Thus, sup, .o R(A, x) = sup|,,=1 2T Az = Amax(A).



PCA: second component

We look for a new linear combination of the Xi's that
® is orthogonal to the first principal component, and
® maximizes the variance.

In other words

w® = arg wiw’

maXx
lw|=1,w Lw()

Using a similar argument as before, we have

A

sw® = \w®

where \> is the second largest eigenvalue



PCA: high-order components

® We solve

k1) = arg max wiw!

lwl=1;wLw® .. wk)

W(

® Using the same arguments as before, we have

S WD) =y wlkHD)

where A1 is the (k + 1)™ largest eigenvalue



PCA: summary

In summary, suppose
XTx =vuAU”T

where U € RP*P is an orthogonal matrix and A € RP*P is diagonal.
(Eigendecomposition of X7 X )

o Recall that the columns of U are the eigenvectors of X7 X and
the diagonal of A contains the eigenvalues of X7 X (i.e., the
(square of the) singular values of X).

o Then the principal components of X are the columns of XU.

o Write U = (u,...,up). Then the variance of the i-th principal
component is

(Xu))T (Xwi) = ul XT Xu; = (UTXTXU)y = Ais.

Conclusion: The variance of the i-th principal component is the
i-th eigenvalue of XTX.

o We say that the first k PCs explain (X5, Ayi) /(37 Aii) x 100
percent of the variance.



summary

PCA
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Number of principal components




