
Mathematical techniques in data science

Lecture 33: Principal component analysis (PCA)



Topics

• By problems:
• Classification
• Regression
• Manifold learning
• Clustering

• By methods:
• Classical regression-based

methods
• Tree-based methods
• Network-based methods

• By meta-level techniques:
• Regularization
• Kernel methods
• Boosting and

bootstrapping



Diagram of a typical supervised learning problem

Supervised learning: learning a function that maps an input to an
output based on example input-output pairs



Unsupervised learning

• Unsupervised learning
• learning an unlabelled dataset: we observe a vector of

measurements xi but no associated response Y (i)

• searching for indirect hidden structures, patterns or features to
analyze the data

• Problems:
• Manifold learning
• Clustering
• Anomoly detection



Low dimensional structures in data

• high-dimensional data often has a low-rank structure

• Question: how can we discover low dimensional structures in
data?



Manifold learning

• learning geometric and topological structures of
high-dimensional manifolds (smooth surfaces)

• learning the low-dimensional approximation (or embedding) to
visualize the dataset

• learning the mapping from high-dimensional manifold to its
low-dimensional embedding



Manifold learning: methods

• Principal component analysis

• Multi-dimensional scaling (MDS)

• Locally linear embedding (LLE)

• Spectral embedding

• t-distributed Stochastic Neighbor Embedding (t-SNE)



Principal component analysis



PCA



PCA: first component



PCA: second component



PCA: formulation

We have a random vector X

X =


X (1)

X (2)

...

X (p)


with mean 0 and population variance-covariance matrix

var(X ) = Σ =


σ21 σ12 . . . σ1p
σ21 σ22 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2p





PCA: formulation

Consider the linear combinations

Y (1) = w11X
(1) + w12X

(2) + · · ·+ w1pX
(p)

Y (2) = w21X
(1) + e22X

(2) + · · ·+ w2pX
(p)

. . .

Y (p) = wp1X
(1) + wp2X

(2) + · · ·+ wppX
(p)

then

var(Y (i)) =

p∑
k=1

p∑
l=1

wikwilσkl = wiΣwT
i

and

cov(Y (i),Y (j)) =

p∑
k=1

p∑
l=1

wikwjlσkl = wiΣwT
j



PCA: formulation

• Let X ∈ Rn×p

• We think of X as n observations of a random vector
(X (1),X (2), . . . ,X (p)) ∈ Rp

• Suppose each column has mean 0

• We want to find a linear combination

β(1)X (1) + β(2)X (2) + . . .+ β(p)X (p)

with maximum variance.
(Intuition: we look for a direction where the data varies the
most.)



PCA

• In practice, we don’t know the covariance matrix
Σ = E [XTX ], and we need to approximate that by

Σ̂ = XTX

• We want to solve

w (1) = arg max
‖w‖=1

w Σ̂wT

• Note that

n∑
i=1

|〈xi ,w〉|2 = ‖XwT‖2 = wXTXwT = wΣ̂wT



PCA: first component

• We solve
w (1) = arg max

‖w‖=1
w Σ̂wT

• Known result:
max
‖w‖=1

wAwT = λmax

where λmax is the largest eigenvalue of A, and the equality is
obtained if w is an eigenvector corresponding to λmax



Proof



PCA: second component

We look for a new linear combination of the Xi’s that

• is orthogonal to the first principal component, and

• maximizes the variance.

In other words

w (2) = arg max
‖w‖=1;w⊥w (1)

w Σ̂wT

Using a similar argument as before, we have

Σ̂w (2) = λ2w
(2)

where λ2 is the second largest eigenvalue



PCA: high-order components

• We solve

w (k+1) = arg max
‖w‖=1;w⊥w (1),...,w (k)

w Σ̂wT

• Using the same arguments as before, we have

Σ̂w (k+1) = λk+1w
(k+1)

where λk+1 is the (k + 1)th largest eigenvalue



PCA: summary



PCA: summary


