
Mathematical techniques in data science

Lecture 34: Manifold learning



Admins

• There will be no Homework 5
• Project presentations:

• Wed 05/11
• Fri 05/13
• Mon 05/16

• Project report due: Thu 05/19



Manifold learning

• high-dimensional data often has a low-rank structure

• question: how can we discover low dimensional structures in
data?



Some definitions

• Metric space: a space on which one can compute the distance
between any two points

• Manifold: every point has a neighborhood that is
homeomorphic to an open subset of an Euclidean space

• a manifold is locally Euclidean while globally its structure is
more complex

• The dimension of a manifold is equal to the dimension of this
Euclidean space



Topics

• Linear methods
• Principal component analysis
• Multi-dimensional scaling (MDS)

• Non linear methods
• Isomap
• Spectral embedding
• Locally linear embedding (LLE)
• t-distributed Stochastic Neighbor Embedding (t-SNE)



Principal component analysis



Multidimensional scaling



Multidimensional scaling (MDS)

• is a means of visualizing the level of similarity of individuals of
a dataset

• seeks a low-dimensional representation of the data that
respects the distances in the original high-dimensional space

• the goal of an MDS analysis is to find a spatial configuration
of objects when all that is known is some measure of their
general (dis)similarity



Problem settings

• The data to be analyzed is a collection of n objects on which
a distance function is defined: dij is the distance between
objects i and object j

• Given dij , MDS want to finds vector z1, z2, . . . , zn ∈ Rd such
that

dij ≈ ‖zi − zj‖

• MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ‖xi − xj‖)2
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MDS

• MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ‖xi − xj‖)2

• the idea is simple, but is easily generalizable



MDS



Isometric feature mapping (Isomap)



Distance on a manifold



Isomap

Isomap differs from MDS in one vital way - the construction of the
distance matrix.

• In MDS, the distance between two points is just the euclidean
distance

• In Isomap, the distances between points are the weight of the
shortest path in a point-graph



Isomap: neighbor graph

• For each point, determine either
• K nearest neighbors
• all points in a fixed radius

• Construct a neighborhood graph.
• each point is connected to other if it is a K nearest neighbor.
• edge length equal to Euclidean distance between the points



Neighbor graph



Isomap: compute intrinsic distance

• Compute shortest path between two nodes
• Dijkstra’s algorithm
• Floyd–Warshall algorithm

• Compute lower-dimensional embedding using MDS

• The graph distance is non-Euclidean, so when embedded back
into Euclidean space, some distortion occur



Intrinsic distance



Isomap



Locally linear embedding



Locally linear embedding

• A manifold is locally Euclidean while globally its structure is
more complex

• Locally, the relation between data points in a neighborhood is
linear/affine

• Idea: try to preserve this linear structure



Locally linear embedding



LLE



t-distributed stochastic neighbor embedding



t-SNE

• All methods proposed so far are great, and they work well if
M is a manifold of low-dimension (2 dimension)

• Sometimes, even if the dimension of M is high, we still want
to embed it to R2 for learning



t-SNE

• There are many problems with embedding high-dimensional
manifold to low-dimensional space
• Structural differences

• in ten dimensions, it is possible to have 11 data points that are
mutually equidistant

• there is no way to model this faithfully in a two-dimensional
map

• Crowding problem:
• the volume of a sphere centered on datapoint i scales as rm,

where r is the radius and m the dimensionality of the sphere
• the area of the two-dimensional map that is available to

accommodate moderately distant data points will not be
nearly large enough compared with the area available to
accommodate nearby data points



Stochastic neighbor embedding

• converting the high-dimensional Euclidean distances between
data points into conditional probabilities that represent
similarities

• The similarity of datapoint xj to datapoint xi is the
conditional probability, pj |i , that xi would pick xj as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at xi



Stochastic neighbor embedding

• Assume that the data points are mapped to y1, y2, . . . , yn in
low-dimension

• we construct a similar quantity for a y

• Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij



t-SNE

• employ a Student t-distribution with one degree of freedom
(which is the same as a Cauchy distribution) as the
heavy-tailed distribution in the low-dimensional map

• Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij



Visualization of MNIST by t-SNE



Visualization of MNIST by Isomap


