Mathematical techniques in data science

Lecture 34: Manifold learning

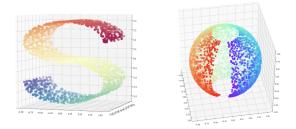
(ロ)、(型)、(E)、(E)、 E) の(()

Admins

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- There will be no Homework 5
- Project presentations:
 - Wed 05/11
 - Fri 05/13
 - Mon 05/16
- Project report due: Thu 05/19

Manifold learning



- high-dimensional data often has a low-rank structure
- question: how can we discover low dimensional structures in data?

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Some definitions

- Metric space: a space on which one can compute the distance between any two points
- Manifold: every point has a neighborhood that is homeomorphic to an open subset of an Euclidean space
- a manifold is locally Euclidean while globally its structure is more complex
- The dimension of a manifold is equal to the dimension of this Euclidean space

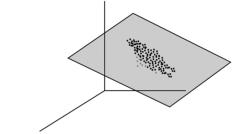
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Topics

- Linear methods
 - Principal component analysis
 - Multi-dimensional scaling (MDS)
- Non linear methods
 - Isomap
 - Spectral embedding
 - Locally linear embedding (LLE)
 - t-distributed Stochastic Neighbor Embedding (t-SNE)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principal component analysis



Problem: How can we discover low dimensional structures in data?

• Principal components analysis: construct projections of the data that capture most of the *variability* in the data.

人口 医水黄 医水黄 医水黄素 化甘油

- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.

Multidimensional scaling

Multidimensional scaling (MDS)

- is a means of visualizing the level of similarity of individuals of a dataset
- seeks a low-dimensional representation of the data that respects the distances in the original high-dimensional space
- the goal of an MDS analysis is to find a spatial configuration of objects when all that is known is some measure of their general (dis)similarity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem settings

- The data to be analyzed is a collection of n objects on which a distance function is defined: d_{ij} is the distance between objects i and object j
- Given d_{ij} , MDS want to finds vector $z_1, z_2, \ldots, z_n \in \mathbb{R}^d$ such that

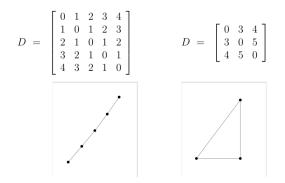
$$d_{ij} pprox \|z_i - z_j\|$$

• MDS is formulated as an optimization problem

$$\min_{x_1,\ldots,x_n}\sum_{i< j}\left(d_{ij} - \|x_i - x_j\|\right)^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem settings



MDS is formulated as an optimization problem

$$\min_{x_1,...,x_n} \sum_{i < j} (d_{ij} - \|x_i - x_j\|)^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MDS

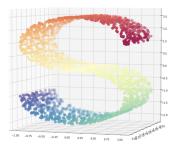
• MDS is formulated as an optimization problem

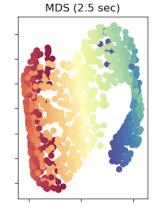
$$\min_{x_1,...,x_n} \sum_{i < j} (d_{ij} - \|x_i - x_j\|)^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• the idea is simple, but is easily generalizable

MDS

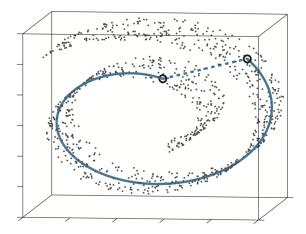




◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Isometric feature mapping (Isomap)

Distance on a manifold



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Isomap

Isomap differs from MDS in one vital way - the construction of the distance matrix.

- In MDS, the distance between two points is just the euclidean distance
- In Isomap, the distances between points are the weight of the shortest path in a point-graph

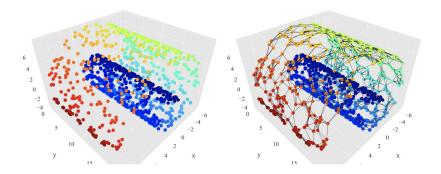
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Isomap: neighbor graph

- For each point, determine either
 - K nearest neighbors
 - all points in a fixed radius
- Construct a neighborhood graph.
 - each point is connected to other if it is a K nearest neighbor.

• edge length equal to Euclidean distance between the points

Neighbor graph



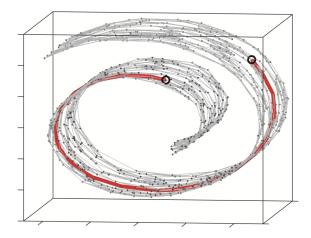
▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Isomap: compute intrinsic distance

- Compute shortest path between two nodes
 - Dijkstra's algorithm
 - Floyd–Warshall algorithm
- Compute lower-dimensional embedding using MDS
- The graph distance is non-Euclidean, so when embedded back into Euclidean space, some distortion occur

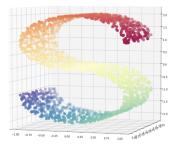
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intrinsic distance

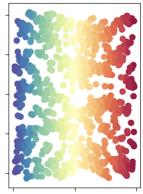


◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Isomap



lsomap (0.34 sec)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Locally linear embedding

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Locally linear embedding

- A manifold is locally Euclidean while globally its structure is more complex
- Locally, the relation between data points in a neighborhood is linear/affine

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Idea: try to preserve this linear structure

Locally linear embedding

- 1. For each data point x_i in p dimensions, we find its K-nearest neighbors $\mathcal{N}(i)$ in Euclidean distance.
- 2. We approximate each point by an affine mixture of the points in its neighborhood:

$$\min_{W_{ik}} ||x_i - \sum_{k \in \mathcal{N}(i)} w_{ik} x_k||^2$$
(14.102)

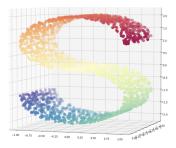
over weights w_{ik} satisfying $w_{ik} = 0$, $k \notin \mathcal{N}(i)$, $\sum_{k=1}^{N} w_{ik} = 1$. w_{ik} is the contribution of point k to the reconstruction of point i. Note that for a hope of a unique solution, we must have K < p.

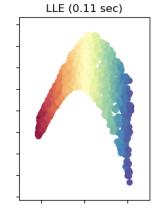
3. Finally, we find points y_i in a space of dimension d < p to minimize

$$\sum_{i=1}^{N} ||y_i - \sum_{k=1}^{N} w_{ik} y_k||^2$$
(14.103)

with w_{ik} fixed.

LLE





シック 単 (中本) (中本) (日)

t-distributed stochastic neighbor embedding

t-SNE

- All methods proposed so far are great, and they work well if \mathcal{M} is a manifold of low-dimension (2 dimension)
- Sometimes, even if the dimension of $\mathcal M$ is high, we still want to embed it to $\mathbb R^2$ for learning

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

t-SNE

- There are many problems with embedding high-dimensional manifold to low-dimensional space
- Structural differences
 - in ten dimensions, it is possible to have 11 data points that are mutually equidistant
 - there is no way to model this faithfully in a two-dimensional map
- Crowding problem:
 - the volume of a sphere centered on datapoint i scales as r^m , where r is the radius and m the dimensionality of the sphere
 - the area of the two-dimensional map that is available to accommodate moderately distant data points will not be nearly large enough compared with the area available to accommodate nearby data points

Stochastic neighbor embedding

- converting the high-dimensional Euclidean distances between data points into conditional probabilities that represent similarities
- The similarity of datapoint x_j to datapoint x_i is the conditional probability, p_{j|i}, that x_i would pick x_j as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian centered at x_i

$$p_{ij} = \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma^2\right)}{\sum_{k \neq l} \exp\left(-\|x_k - x_l\|^2 / 2\sigma^2\right)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stochastic neighbor embedding

- Assume that the data points are mapped to y_1, y_2, \ldots, y_n in low-dimension
- we construct a similar quantity for a y

$$q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq l} \exp(-\|y_k - y_l\|^2)}$$

· Goal: Minimize the difference between the two probabilities

$$\min_{y} \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

t-SNE

 employ a Student t-distribution with one degree of freedom (which is the same as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map

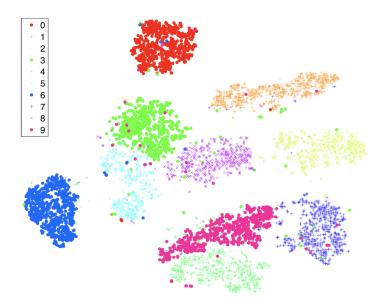
$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

· Goal: Minimize the difference between the two probabilities

$$\min_{y} \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Visualization of MNIST by t-SNE



Visualization of MNIST by Isomap

