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Abstract— The problem of consistently estimating the sparsity graphical model structure—and then studying conditiordenn

pattern of a vector * € R” based on observations contaminated which various polynomial-time methods are either conaiste
by noise arises in various contexts, including signal densing, or conversely inconsistent.

sparse approximation, compressed sensing, and model sdlen. . . .
We analyze the behavior of¢;-constrained quadratic program- In this paper, we study the following problem of high-

ming (QP), also referred to as the Lasso, for recovering the dimensional inference with sparsity constraints: givemsyo
sparsity pattern. Our main result is to establish precise coditions  linear observations of an unknown vect®t, how to recover

on the problem dimensionp, the number k of non-zero elements the positions of its non-zero entries, otherwise known as
in 8, and the number of observationsn that are necessary its sparsity patternor support se? This problem, known

and sufficient for sparsity pattern recovery using the LassoWe . | it ; e
first analyze the case of observations made using determinic Vartously as sparsity recovery, Support recovery, or vegia

design matrices and sub-Gaussian additive noise, and praie Selection, arises in a broad variety of contexts, including
sufficient conditions for support recovery and¢-.-error bounds, subset selection in regressif#8], compressed sensing [9], [4],
as well as results showing the necessity of incoherence andstrycture estimation in graphical modéRy|, sparse approx-
bounds on the minimum value. We then turn to the case of jy4iion (8], and signal denoisinéf]. A natural optimization-
random designs, in which each row of the design is drawn from . ) . L A

a N(0,%) ensemble. For a broad class of Gaussian ensembledheoretic formulation of this problem is vi&-minimization,
satisfying mutual incoherence conditions, we compute exgit Where the/y “norm” of a vector corresponds to the number of
values of thresholds0 < 6,(X) < 6.(X¥) < +oo with the non-zero elements. Unfortunately, howevéy;minimization
following properties: for any 6 > 0, if n > 2(6. +6) klog(p—k), problems are known to be NP-hard in gene@d], so that
then the Lasso succeeds in recovering the sparsity patternith the existence of polynomial-time algorithms is highly &eli.

probability converging to one for large problems, whereas dér . : .
n < 2(0, — 8)k log(p — k), then the probability of successful THiS challenge motivates the use of computationally tizeta

recovery converges to zero. For the special case of the unifo ~@pproximations or relaxations tg minimization. In particular,
Gaussian ensembleX = I,,x,), we show thatd, = 6, = 1, sothat a great deal of research over the past decade has studied the

the precise thresholdn = 2klog(p — k) is exactly determined.  yse of thef;-norm as a computationally tractable surrogate to

Keywords: Compressed sensing; Convex relaxation; HigtP fo-norm. _ _
dimensional inference?; -constraints; Model selection; Phase [N more concrete terms, suppose that we wish to estimate

transitions; Sparse approximation; Signal denoising;stban unknown but fixed vectgs” € R” on the basis of a set of
selectionf] n-dimensional observation vectgre R™ of the form

. . ) o _ wherew € R" is zero-mean additive observation noise, and
The area of high-dimensional statistical inference is cor; - pnxp js the measurement or design matrix. In many

cerned with the behavior of models and algorithms in Whi%bttings, it is natural to assume that the vegtoiis sparse, in
the dimensiorp is comparable to, or possibly even larger thag, 5 the cardinality: = |S(3%)| of its support
the sample sizer. In the absence of additional structure, it

is well-known that many standard procedures—among themS(8*) :={i € {1,...p} | B8] #0} satisfiesk < p. (2)

Ilnear regression and prin cipal component ana|y3|_s—ale_ 'Biven the observation moddIl (1) and sparsity assumplibn (2)
consistent unless the ratjg/n converges to zero. Since this RS .
a reasonable approach to estimatifiy is by solving the

spalmg precludes ha}wrygcompar_able or larger than an ac- ¢1-constrained quadratic program (QP), known as the Lasso
tive line of research is based on imposing structural camuit . N .
in the statistics literaturé3Q], given by

on the data—for instance, sparsity, manifold constraiats,
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where the regularization paramet®y, and constraint level more specifically on the recovery of sparse vectors in thi-hig
C,, are in one-to-one correspondence via Lagrangian dualithmensional setting. In contrast to the noiseless settimeye

In this paper, we focus on the following question: what arare various error metrics that can be considered in the noisy
necessary and sufficient conditions on #trabient dimension case, including:

p, thesparsity indexk, and thenumber of observations for ~ , some measurement of predictive power, such as the mean-
which it is possible (or impossible) to recover the suppetts  squared errof[||Y; — Y;||2], whereY; is the estimate
S(B*) using the Lasso? based onj: and

o various/, normsEHB— B*[|Z, especiallyly and/y;
. ) « the subset or variable selection criterion, meaning the
A. Overview of previous work correct recovery of the subsstof non-zero indices.

Recent years have witnessed a great deal of work on tBee line of work has focused on the analysis of the Lasso
use of ¢; constraints for subset selection and/or estimaticand related convex programs for deterministic measurement
in the presence of sparsity constraints. Given this subatanensembles. Fuchil 8] investigates optimality conditions for
literature, we provide only a brief (and hence necessarillge constrained QF](3), and provides deterministic coovuiti
incomplete) overview here, with emphasis on previous work the mutual incoherence form, under which a sparse solutio
most closely related to our results. In the noiseless versiwhich is known to be withine of the observed values, can
(02 = 0) of the linear observation moddll (1), one can imaginge recovered exactly. Among a variety of other results, both

estimating3* by solving Tropp [32] and Donoho et al[12] also provide sufficient
) bi B 5 conditions for the support of the optimal solution to the
Sekr 15l subjectto X =y. (5)  constrained QPLI3) to be contained within the true support

, o . ... of §*. We discuss connections to this body of work at more
This problem is in fact a linear program (LP) in disguise, : . :
S . ength in SectiofTll. Another line of work has analyzed tlseu

and corresponds to a method in signal processing known as

. o . of the Lass0[3],[11], as well as other closely related convex
basis pursuit, pioneered by Chen et [@]. For the noiseless : : .

. . . A - relaxations[5] when applied to random ensembles with mea-
setting, the interesting regime is the underdeterminetihget .

surement vectors drawn from the standard Gaussian ensemble

(i.,e., n < p). With contributions from a broad range of . : . ) ..
researchers3), [6], [15], [17], [26], [31, there is now a fairly These papers e|th¢r prowd_e cond!tlons underwhmh estmpat
of a noise-contaminated signal via the Lasso is stable in the

complete understanding of the conditions on the measurbm&nsense[a]’ [11], or bounds on the MSE prediction erri.

matricesX and sparsity indices that ensure that the true so- . .
P y owever, stability results of this nature do not guarantexe

lution /3 can be recovered exactly using the LP relaxqiibn ( |)e'covery of the underlying sparsity pattern, accordingh® t
Most closely related to the current paper—as we discuss

| . . . . . .
e mibdel selection criterion that we consider in this papesoAl
more detail in the sequel—are results by Don@h@, as well pap

) . kY related to the current paper is recent work on the use of
as Candes and Tad] that provide high probability resultsg}/e Lasso for model selection, both for random designs by

for random ensembles. More specifically, as independen kinshausen and Buhlman@7] and deterministic designs

?osrtibrili?gr?r? ggubsc;tignsztrfsg;ablljet:O(I;Ség-s-lrl(::] ;'Igerf)mi Tde‘);ho ?/ Zhao and Yu[37]. Both papers established that when
. : : ) R c oo Bt guitable mutual incoherence conditions are imposed omreith
with the ambient d'”ﬁens"?p scaling linearly in terms of the random[27] or deterministic design matricd87], then the
nhumber .Of observations (i.ep, = 57;' rflor sI(IJme5 < (0,1), Lasso can recover the sparsity pattern with high probgidit
there exists a constaate (0, 1) such that all sparsity patterns, specific regime oh, p andk. In this paper, we present more

szi?alkregsﬁfs Cﬁgvgebreeecnovser::?p\elvr:? d hilr?hsgl;zte)zgle“m \;523(3 z{neral sufficient conditions for both deterministic anad@m
Donoho and Tannef13, who show that the basis pursuit signs, thus recovering these previous scalings as $pecia

LP (3) exhibits phase transition behavior, and provide iseec cases. In addition, we derive a set of necessary conditions
: ) : b : ' P PEEC tor random designs, which allow us to establish a threshold
information on the location of the threshold. The resultthis

oo - . result for the Lasso. We discuss connections to this body of
paper are similar in spirit but applicable to the casenoisy

i . Y)vork at more length in Sectidn TVA.
observations: for a class of Gaussian measurement ensemble

including the standard oneX(; ~ N (0, 1), i.i.d.) as a special o

case, we show that the Lasso quadratic progrEIm (3) aRe Our contributions

exhibits a phase transition in its failure/success, andigeo  This analysis in this paper applies to high-dimensional

precise information on the location of the threshold. setting, based on sequences of models indexed(zh¥)
There is also a substantial body of work focusing on theghose dimensiorp = p(n) and sparsity levek = k(n)

noisy setting ¢ > 0), and the use of quadratic programare allowed to grow with the number of observations. In

ming techniques for sparsity recovery. THe-constrained this paper, we allow for completely general scaling of the

quadratic program[13), known as the Lasso in the statistigiplet (n, p, k). Consequently, the analysis applies to different

literature[30], [14], has been the focus of considerable researsparsity regimes, includintinear sparsity(k = ap for some

in recent years. Knight and F[22] analyze the asymptotic o > 0), as well assublinear sparsitfmeaning that /p — 0).

behavior of the optimal solution, not only fér regularization In this paper, the bulk of our results concern the problem of

but for ¢,-regularization withg € (0, 2]. Other work focuses signed support recoverydefined more precisely as follows.



For any vector3 € R?, we define its extended sign vector First, for sequence$n,p, k) such that the rescaled sample
size et 0.(%), it is always possible to choose the

+1 ff Bi>0 regularization parametey,, such that the Lasso has a unique
S+(Bi) = (-1 if B;<0 (6)  solution3 with S+(8) = S+ (3*) with probability converging
0 if 3;, =0, to one (over the choice of noise vectorand random matrix
which encodes theigned supporbf the vector. Of interest to X). Conversely, whenever the rescaled sam_ple_3|ze satisfies
: L s——0= < 0¢(X), then for whatever regularization param-
us are the following two questions: 2k log(p—k)

) - . eter A, > 0 is chosen, no solution of the Lasso correctly
« achievability results: under what scalings(ef p, k) does - gaifies the signed support with probability converging to
the Lasso[(B) have anique solution that recovers the gne - Although inachievability results of this type have ee
signed supportS.(§) = S.(57))? established for the basis pursuit LP in the noiseless gdftB),
- converse results: under what scallngs(m;‘pzk) doesno 5 the best of our knowledge, our lower bound for the Lasso is
solutionof the Lasso specify the correct signed supporge first set of necessary conditions for exact sparsityveryo
We analyze these questions both for deterministic designsthe noisy setting. For the special case of the uniform
(meaning the measurement matixis viewed as fixed) and Gaussian ensemble considered in past work (Bes I, so
random designsX drawn from random ensembles). We begithat X;; ~ N(0,1), i.i.d.), we show that, (1) = 0,(I) = 1,
by providing sufficient conditions for Lasso-based recgver so that the threshold is sharp. This threshold result has a
succeed with high probability over the random observatigiumber of connections to previous work in the area that
noise, when applied to deterministic designs. Moving to thfgcuses on special forms of scaling. More specifically, as we
case of random designs, we then sharpen this analysis dicuss in more detail in Secti@@I¥B, in the special case of
proving thresholds for the success/failure of the Lasswdor linear sparsity(i.e., k/p — o for somea > 0), this theorem
ous classes of Gaussian random measurement ensembles.piVides a noisy analog of results previously establishoed f
analysis of the Gaussian random designs can be understpagis pursuit in the noiseless calé), [4],[13. Moreover,
as revealing thesample complexityf Lasso-based sparsityour result can also be adapted to an entirely different sgali
recovery, meaning how the sample sizenust scale with the regime, in which the sparsity index @iblinear (k/p — 0),
problem parameter§, k) if exact sparsity recovery is to beas considered by a separate body of recent i@k [37] on

obtained using the Lasso. the high-dimensional Lasso.
To provide some intuition, panel (a) of Figdtk 1 plots the _ _ _ _
probability of successful support recovétif.. (3) = S+ (8*)] The remainder of this paper is organized as follows.

versus the sample size for three different problem sizesWe begin in Sectioidl with some necessary and sufficient
p € {128,256,512}, and k = [0.40p>7] in each case. conditions, based on standard optimality conditions for
Each point on each curve corresponds to the average ovepvex programs, for the Lasso to have a unique solution
200 trials, in each case drawiny € R™*? randomly from that recovers the correct signed support. We then prove
the standard Gaussian ensemhlg;(~ N(0,1), i.i.d), and @ consistency result for the case of deterministic design
drawingw ~ N (0, 021), with o = 0.50. Note that each curve matrices X. Section[IY is devoted to the statements of

~

starts atP[S+(3) = S+(6*)] = 0 for small sample sizes, Our main result on the asymptotic behavior of the Lasso

~

and then react?[S. (3) = S+ (3*)] = 1 for sufficiently large for random Gaussian ensembles, and discussion of some

sample sizes. Of course, the transition point from failure ©f their consequences. Proofs are provided in Sectidhs V
success depends on the prob|em $1,ZW|th |arger prob|ems and m We illustrate our theoretical results via simulatio
requiring more samples. This observation raises the datufaSectiorMIl, and conclude with a discussion in SecfionlVIl
guestion:what is the scaling law that links the problem sjze
and sparsity index to the sample size? One contribution of
our theory is to provide a precise specification of this scali
law. Panel (b) of FigurEl1 shows the same experimental &gsu
with the probability of support recovery now plotted versuns
“appropriately rescaled” version of the sample size, witleee
scaling is predicted by our theory. Note that as predicted §
our theory, all of the curves now line up with one anothe
even though the problem sizes and sparsity indices vary d )
matically. In SectiofiLVl, we show qualitatively similargelts
for different sparsity scalings (behavior &f as a function Means thatf(n) = O(g(n)) and f(n) = Q(g(n)). The
of p), and more general measurement ensembles, theréw-'bOI f(n) = o(g(n)) means thatf(n)/g(n)_ — 0. For
showing excellent agreement between theoretical predlictipa ameters, b € [1, oo] and a matrixM, we define thda/&.’
and empirical behavior. operator norm| M|, = ||gﬁ3§1 |[Mz||p. Important special
In analytical terms, our main result on Gaussian randocases include thé. /¢, operator norm, also known as the
ensembles (Theoreni$ 3 abd 4) show that there exist a pgiectral norm, denoted HyV/||2 2 or || M| for short, and the
of constants) < 6y(¥) < 6,(¥) < +oo, depending on the (w /(o operator norm, given bffM [loc oo = max; D, | M),
covariance matrixz such that the following properties hold.and denoted by M ||, for short.

Notation: We collect here some standard notation used
}proughout the paper. Throughout the paper, we use the
notationcy, co etc. to refer to positive constants, whose value
may differ from line to line. Given sequence&n) and

n), the notationf(n) = O(g(n)) means that there exists

f constantc; < oo such thatf(n) < ci1g(n); the notation
fa(p) = Q(g(n)) means that there exists a constapt> 0
such thatf(n) > ca2g(n); and the notationf(n) = ©(g(n))
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Fig. 1. (a) Plots of the success probabiliB[S+(8) = S+(8")] of obtaining the correct signed support versus the sampkersi
for three different problem sizes in all cases with sparsiti = [0.40p% 7. (b) Same simulation results with success probability
plotted versus the rescaled sample di¢e, p, k) = n/[2klog(p — k)]. As predicted by Theorenid 3 ahHt 4, all the curves now lie
on top of one another. See Sectlon]VIl for further simulatiesults.

[I. BACKGROUND AND PRIMAL-DUAL WITNESS satisfy the relations

CONSTRUCTION ) .
z; = sign(6;) if B; #0, andz; € [-1,+1], otherwise. (7)

In this section, we begin by developing the convex-analytic
conditions that characterize the optima of theregularized

quadratic progranf]3). We then specify the construction th » et
underlies the proofs of our main results, and prove sorffélexed byA. For any vectors € R?, we define itssupport

elementary lemmas that show how it characterizes the ssicc8& 5 (5) = {i | 8; # 0}. With these definitions, we state the

(or failure) of the Lasso in recovering the correct suppett s following:

We refer to this method as primal-dual witness since it | emma 1. (a) A vector3 € R? is optimal if and only if
is based on an explicit construction of a pair of vectors that  there exists a subgradient vectére 5”3”1 such that

(when the procedure succeeds) are a primal and dual optimal R 1

solutions for the Lasso, and act as a witnesses for the ¢orrec —XTXB-8)—=XTw+ X2 = 0. (8)

recovery of the support. n n

For any subsetd C {1,2,...,p}, let X4 be then x |A]
matrix formed by concatenating the columf&;,i € A}

(b) Suppose that the subgradient vector satisfies the strict

o . dual feasibility condition)z;| < 1 for all j ¢ S(). Then
A. Convex optimality and uniqueness any optimal solutions to the Lasso satisfies; = 0 for

We begin with some basic observations about the Lasso all j & S(5).
problem [B). First, the minimum in the Lasso is always (C) Under the conditions of part (b), if thé x & matrix
achieved by at least one vectgr ¢ R”. This fact follows Xg(g Xg(p) Is invertible, then3 is the unique optimal
from the Weierstrass theorem, because infitxonstrained solution of the Lasso program.
form (@), the minimization is over a compact set, and the
objective function is continuous. Second, although thélem
is always convey, it is not always strictly convex, so that th
optimum can fail to be unique. Indeed, a little calculatio®. Primal-dual witness construction
shows that the Hessian of the quadratic component of th
objective is thep x p matrix X7 X/n, which is positive
definite but not strictly so whenever > n. Nonetheless, as
stated below in Lemmi 1, strict dual feasibility conditiare
sufficient to ensure uniqueness, even under high-dimeakio
scaling p > n).

The objective function is not always differentiable, sirice ] o ) '
¢,-norm is a piecewise linear function. However, the optima 1) First, we obtainfs & R* by solving therestrictedLasso
of the Lasso[[B) can be characterized by a zero subgradient Problem,
condition. A vectorz € RP is a subgradient for thé;-norm . . 1 9
evaluated a3 € R?, written asz € 9||3|1, if its elements Bs = A8 R {% ly = XsBsllz +AnllOslla}- (9)

The proof is provided in AppendiXIB.

SWe now turn to the proof technique that underlies our main
results. UsingS as a shorthand for the support sg{3*)

of the true vector5*, we assume throughout that thex k
matrix X2 X is invertible. Under this condition, therimal-
dual witness(PDW) method consists of constructing a pair
(8, 2) € R? x RP according to the following steps:



The solution to this restricted convex program is guar-  succeeds if and only if
anteed to be unique under the invertibility condition on . .
XT Xy We setds: 0. 1Z;| <1 forall j e Se. (12)

2) Second, we choosgs € R* as an element of the For strict dual feasibility, these inequalities must hold
subdifferential of the/; norm evaluated afs. strictly.

3) Third, we solve for a vectotse € RP~* satisfying the  (b) The sign consistency condition in Step 4 of the PDW
zero subgradient conditiofl(8), and check whether or not  method can be satisfied if and only if
the dual feasibility conditionz;| < 1 for all j € S° is . . _
satisfied. (For ensuring uniqueness, we check for strict sgn{B +Ai} = sgn(fy) forallieS. (13)
dual feasibility, i.e.,|z;| <1 for all j € 5%) See AppendifD for the proof of this claim.

4) Fourth, we check whether tlsggn consistency condition

sk oo o
Zs = sign(Bg) is satisfied. I1l. ANALYSIS OF DETERMINISTIC DESIGNS

To be clear, this procedure isot a practical method for In this section, we show how the primal-dual witness
solving the/, -regularized quadratic prografd (3), since solvingonstruction can be used to analyze the behavior of the Lasso
the restricted problem in Step 1 requires knowledge of the the case of a deterministic (non-random) design matrix
unknown support sef. Rather, the utility of this constructive X < R™*P, and observation noise vectois € R" from
procedure is as a proof technique: it succeeds if and onfeif ta sub-Gaussian distribution (see Sectidn A for background
Lasso has a unique optimal solution with the correct signesh sub-Gaussian random variables). We begin by stating a
support. This characterization allows us to certify suppgpositive result (Theoreild 1) that provides sufficient condi
consistency properties of the Lasso, as summarized by foelLasso success with high probability over the noise vsgto
following result, proved in AppendikIC: and then discuss some of its consequences. Our second result
on deterministic designs (Theoréln 2) isolates some camditi
that are sufficient to guarantee failure of the Lasso. Both of
(a) If Steps 1 through 3 of the PDW method succeed withese results are proved using the link between the primal-d

strict dual feasiblity in Step 3, then the Las@) has a Wwitness (PDW) method and the success/failure of the Lasso,
unique solution3 with S(3) C 5(8%). as stated in Lemmds 2 ahH 3.
(b) If Steps 1 through 4 succeed with strict dual feasibility

in Step 3, then Lassf@) has a unique solutior with A, Sufficient conditions and some consequences

the correct s?gngd support (i.654(8) = S+ (8")). To gain intuition for the conditions in the theorem statetnen
(c) Conversely, if either Steps 3 or 4 of the PDW methéj/

Lemma 2. Assume thathXs is invertible.

il th h fail h ethql s helpful to consider theero-noise conditionv = 0, in
ail, then the Lasso fails to recover the correct signeg i h each observation, = =7 is uncorrupted, and more-

support. over to assume that we are seeking signed support recogery, s

The challenges in the primal-dual witness constructioinlie that we needs = sign(J35). Under these conditions, assuming
verifying thedual feasibility conditiorin Step 3, and theign thatA. > 0, the conditions of Lemm&l 3 reduce to

consistency conditiomn Step 4. More specifically, whether maX|XJTXs(X§X5)_1sign(ﬁ§)| < 1
or not these steps are successful depends on the behavior of i€5°¢ .
certain random variables, associated with the supfoand « Ty (LT -1 * _ *
non-supporiS¢ of the true solutiond*. In particular, we define sen (57 — e /\"(nXS Xs) “sen(fy) = sen(d),
for eachj € 5S¢, the scalar random variable where the latter equality must hold for all € S. If the
T T e w primal-dual withess method fails in the zero-noise settihgn
Zj = Xj {XS(XSXS) zs +HX§(/\nn)} (10)  there is little hope of succeeding in the presence of noise.

These zero-noise conditions motivate imposing the foltawi

wherelly, = In.n, — Xs(X§Xs) X is an orthogonal set of conditions on the design matrix: first, there existaao
projection matrix, andis is the subgradient vector chosen inncoherence parametey e (0,1] such that

Step 2 of the PDW method. Moreover, for eaclke S, we .
define the scalar random variable X8 Xs(XEXs) oo < (1—7), (15)

N eiT(ngXs)_l [ngw — A, sgn(85)]. (1) and || - [l denotes the/,, /¢, operator norrfl, and second,
n n there exists somé€’,,,;,, > 0 such that
As formalized by the following lemmaZ; is the candidate 1
dual variable solved for in Step 3 of the primal-dual constru Amin(ﬁXgXS) > Chin, (16)
tion. On the other hand, if the Lasso is sign-consistent, then A
variable A; is equal to theAdifferencéi — [ at positions where
between the Lasso solutighand the truths*.

min. denotes the minimal eigenvalue. Mutual inco-
herence conditions of the forni_{{15) have been considered
in previous work on the Lasso, initially by Fuch$8 and

Lemma 3. Assume that the matriXSTXs is invertible. Then ) ) o
2Recall that for anm x n matrix M, this norm is given by

(a) The dual feasibility check in Step 3 of the PDW methdd? ll:=, max 577, [Mij].



Tropp [32]. Other authors|27],[37] provide examples and (3) Theoren(ll is also related to an independent body of
results on matrix families that satisfy this type of coraliti  past work by Meinshausen and Buhlmann [27] and Zhao and
Consider the linear observation modal (1) with fixed desigru [37], who studied the probability of correct support reco
X € R™? and additive noise vectow € R" with i.i.d. ery as(p,k) scaled in a very specific way with sample size.

entries that are zero-mean and sub-GauBsith parameter Specializing Theoreid 1 to their particular scaling recevbe
o > 0. With this set-up, we have the following set of sufficienfollowing corollary [37]:

conditions for sparsity recovery for deterministic design . . -
P y y 9 Corollary 1. Suppose that the design matriX satisfies

Theorem 1. Assume that the design matri satisfies con- the conditions of Theorerl 1, and that = O(exp(n%)),
ditions (I8) and (@), and has itsn-dimensional columns k = O(n®'), and moreover tha?, > 1/n(1=%) with

normalized such that /2 max || X;|| < 1. Suppose that the
. . Jjese ’ o 0 < 61+03 < 95 < 1.
sequence of regularization parametdrs,, } satisfies
If we set\2 = 1/n'~% for somes, € (63,2 —61), then under

A > 2 202 logp (17) the conditions of Theorefd 1, the Lasso recovers the sparsity
" vV on pattern with probabilityl — exp(—cin%4).
Then for some constamat > 0, the following properties hold Proof: We simply need to verify that the conditions of

. - 2 .
with probability greater thanl — 4eXfi(_01”/\n) — L Theorem[L are satisfied with these particular choices.,First
(@) The Lasso has a unique solutione R? with its support with the given choice of regularizer, we have
contained within the true support (i.e5(3) C S(5%)),

and satisfies thé., bound: logp _ O(n%/(n* 'n)) = O(n% %) -0,

2
n\Z

|- so that the inequality{17) certainly holds. Sin&¢ X is a
k x k matrix, we have

4o
Cmin

9(An) (18)

(b) If in addition the minimum value of the regres-
sion vector 5 on its support is bounded below as < AV
Pmin > g(An), then 3 has the correct signed support = Cmin
(i.e.,SL(B8) =S+ (6%)). Therefore, in order to check the condition from Theo-

Remarks: (1) First, it is worthwhile to consider Theorekh 1remEl(b) on the minimum value, it is sufficient to show that
’ 2y VE o(1). Under the given scalings, we have

in the classical setting, in which the number of samples Buin
tends to infinity, but the model dimensiom and sparsity )2
index & do not depend om. Knight and Fu [22] established —Zz— = O(n* n’ipl1=%2)) = O(n1+07%) — 0,
consistency of the Lasso with additive Gaussian noise under™" -
the scalings\, — 0 and nA2 — +oo, whictl guarantee Showing that the condition ofl;, holds.
that the conditions of Theorefd 1 hold, and moreover that O
the probability of success converges to one. For instanceThe scaling given in Corollarf]1 is interesting since it
one could choose\? = 1/n'~? for somed > 0, which allows the model dimensiop to be exponentially larger than
would then guarantee recovering, with probability greatéhe number of observationg (> n). On the other hand, it
than 1 — 2exp(—cn?), all signals3* with minimum value imposes an extremely strong sparsity constraint, since the
Bunin = Qn="27). ratio k/p = n’t exp(—n%) vanishes exponentially fast. If we
consider general scaling of the triplét, p, k), Theorem[1

(2) Theorentll is also related to past work by Fuchs [18juggests that having on the order ofi log p is appropriate,
Tropp [32] and Donoho et al. [12], who (among variousince this sample size would allow the minimum valgig;,
other results) provided sufficient conditions for Lasssdzh to decay asl/v/k. In Section[I¥, we show that this type of
support recovery under mutual incoherence constraintss@hscaling is both necessary and sufficient for almost all roedri
sufficient conditions were deterministic in nature, based @rawn from suitable Gaussian designs.
either assuming certain bounds on thenorm of the noise
vectorw, or on thely-norm of the besk-term approximation (4) Of course, Theorenldl1l has consequences for esti-
to the input signaly (e.g., Thm. 4 [18], Thm. 8 [32], or Thm mation of 5* in {2 norm. In particular, assuming that
4.1 [12]). Theorenil can be viewed as a stochastic analog|¢f % Xs)/nll« = O(1) for simplicity, the ¢, bound [IB),
such results, in which we study the probability of succdssfin conjunction with thek-sparsity of3*, implies that
support recovery as the problem sigeand sparsity index
scale with the sample size ||B_ Bl = O(An\/E) =0

1Bs = Bsloe < Aa[[|(XEXs/m)7Y| +

1 _ 1 _
Ml (XX Mo < VAL (XEX9)

klogp

);

n

3See Appendifh for background. o .
ey, = /logp
4To be clear, our regularization paramete; is related to the choicer, where we have chos - O( n ) Of course, given that
of the paper [22] via the relation,, = pn /7. Theorendl guarantees recovery of the supghrone could



obtain a better/,-estimate by simply performing ordinaryStep 4 of the PDW construction holds.
regression restricted to the supp®it

B. Some necessary conditions Establishing strict dual feasibilityWe begin by establishing

We now turn to some partial inachievability results, prot_hat Step 3 of the primal-dual witness condition succeeds wi

viding sufficient conditions for failure of the Lassf] (3) infigh Probability. Recalling the definitior {1L0), note thaew
recovering the support set: have the decompositiodd; = ;; + Z;, where

Theorem 2 (Inachievability for deterministic designpuppose Hio = XJ‘TXS(XgXS)%éSv (23)
that the eigenvalue conditioff8) holds, and the noise vector
has a distribution symmetric around zero.
() Suppose that the mutual incoherence condif{@8) is
violated — say

and Zj = XfHXSL(A:’—n) a zero-mean sub-Gaussian noise
variable. Sincezs € R¥ is a subgradient vector (chosen in
Step 2) for the/; norm, we havd|Zs|l. < 1. Applying the
incoherence conditior {L5) yields that;| < (1 —~) for all
né%x|XjTXS(X§X5)*1 sgn(BL)|=14+v > 1. (19) indicesj € S°¢, from which we obtain that

jese - ~

Then for any), > 0 and for any sample sizen, ?é%)§|zj| = (1_7)+§%as§|zj|'

the probability of correct signed support recovery

'Bince the elements af are zero-mean and sub-Gaussian with
bounded away from one — namely

parameter?, it follows from property [4D) that the variable

-~

P[S+(8) =S+(p*)] < 1/2. (20) Zj is sub-Gaussian with parameter at most
. . . 0.2 02
(b) For eachi € S, define the quantity o HHXé- (X)2 < ors
- XTXs. . " "
gi(An) = /\nef(ST) "sgn(85).  (21)  where we have used the facts that the projection Mt

- v 13
Suppose that for some € S, we have the inclusion Tazspectral ngrmbon;ar; andbthg Con(_j'tm?l_?lgx-auﬁfﬂ |4|128§
B € (0,9:;(\)) or the inclusions; € (g;(A\»),0). Then . onsequently, by the sub-L>aussian tail o (48) com-

the probability of correct signed support recovery i?ined with the union bound, we obtain

bounded away from one: A2 n t?

~ Plmax|Z;| > 1] < 2(p—k) exp (— 572 ).

PS+(B) =S+(8)] < 1/2 (2) %
) . Settingt = 7 yields that
Theorem[R(a) is a precise statement of the fact that the
2 n ,YQ

mutual incoherence conditiof{15) is an essential requérgm ~ vy A2
for support recovery using the Lasso; see Zhao and Yu [37]P[§2%’§|Zj| 2 5] < 2exp{ — 32 T log(p — k) }-
for relate_d observa'_uons_. Theorellh 2(b) re\_/eals t\{vo facmﬁ%tting together the pieces and using our chdicé (17),0f
that are important in signed support consistency: the N conclude that
ditioning of matrix (X Xg/n), and the magniduate of the
regularization parametek,, relative to the minimum value Plmax |Z;| > 1 — z] < 2exp{—caAln} — 0.
i * jES® 2

Bmin = MiNjeg |ﬁl |

With regards to the former issue, the ideal case is when the
columns of X are orthogonal, in which case the matrix i€stablishing/,, bounds:Next we establish a bound on the
simply the identity. More generally, control ofy.-operator ¢. -norm of the random vectahs from equation[{(Ti). By the
norm [|(XZ Xs/n) [l or a related quantity, as needed fotriangle inequality, the quantityax |A;| is upper bounded by
the /..-bound [IB) in Theorerl1 to be reasonably tight, is s

required for sign consistency. With reference to the lastsue, XTXg 1T W XEXs, ) 24
the quantityg;(\,) corresponds to the amount by which the H( n ) s EHoo T H( n ) Hoo n (24)
Lasso estimate in positianc 5 is “shrunken”, and it inposes The second term is a deterministic quantity, so that it resiai

the constraint that the valyg;,;, cannot decay to zero fasteryy pyound the first term. For each= 1.... k. consider the
than the regularization parametey. random variable Y

1 .1
C. Proof of Theorerfil1 Vi = ezT(EXg:XS) lﬁxszw-
The proof of Theoren{]l consists of two main partssince the elements af are zero-mean and i.i.d. sub-Gaussian

we first establish that the random variablgg;, i € S°}  with parameters?, it follows from property [4D) that/; is

previously defined{J0) satisfy strict dual feasibility witigh zero-mean and sub-Gaussian with parameter at most
probability, so that Step 3 of the PDW construction succeeds

2
We then establish af,, bound on the variable§A;,: € S} U—|||(£X§X5)‘1|||2 <
previously defined[[A1), which (under the assumptions of n-on
TheorenlL(b)) ensures that the sign consistency conditionGonsequently, by the sub-Gaussian tail bound (48) and the

o2

Ominn



union bound, we have matrix 3. In this setting, we specify explicit threshold func-
20 - n tions of the triple(n, p, k) and covariance matriX that govern
man . . .

nax 952 + log k) the success and failuref the Lasso over a given Gaussian

’ ensemble (Theorerk 3 aldd 4 respectively). Note that our-Gaus
We sett = 40\, /v/Ciin, and note that by our choicE{17) ofsian ensemble results cover not only the standard Gaussian
An, We have the inequalitgn)? > logp > logk. Putting ensembleX = I,,), but also more general Gaussian designs.
together these pieces, we conclude that the probababilitge begin by setting up and providing a precise statementof th
Plmax;—1,... k| Z;| > 40X, /v/Cmin] vanishes at rate at leastmain results, and then discussing their connections taquev
2 exp(—caA2n). Overall, we conclude that work. In the later part of this section, we provide the proofs

~ 40
1Bs = Bslle < A
sl " [ Vv szn
with probability greater than — 2 exp(—c2A2n), as claimed.  As before, we consider the noisy linear observation model
except that the measurement matikk € R™ P is now
random—namely,

XEXs/n)7Y| ]
+ | (Xs Xs/n) HOO] A. Statement of main results

D. Proof of Theorenl2
We prove part (a) by showing that either the sign con- ¢ = X0"+w, withiid.rowsz; ~N(0,%). (25)

sistency check in Step 4, or the dual feasibility check iy results are based on imposing (subsets of) the following

Step 3 of the PDW must fail with probability at leasf2. conditions on the covariance matrices forming the design:
We may assume thais = sign(8§); otherwise, the sign

consistency condition fails. So it remains to show that unddZscs(Ess) 'l < (1 —7) for somey € (0,1],(26a)

this condition, the dual feasibility condition in Step 3l$aiith Amin(Bss) > Cmin > 0, and (26b)

probability at least /2. Let j € S° be an index for which the Amas(Es5) < Chuaw < +00. (26¢)

maximum in the violating condition{19) is achieved. From B

proof of Theorenil, we have the decompositin= p;+~Z; Note that conditiond(Zba) and{26b) are simply the popurati

with p; = Xsz(XSTXs)_l sign(3%), using the fact that analogs of the condition§{[L5) and16) imposed previously

zs = sign(B%). Without loss of generality, we may assumé@n the deterministic designs. The upper boundl(26c) is re-

that u; = 1 + v, as the argument withy; = —1 — v quired only for establishing the inachievability claim—mnely,

is entirely analogous by symmetry. Note that sineeis sufficient conditions for failure of the Lasso. The simplest

symmetric about zero by assumption, the random varigple example of a covariance matrix satisfying these conditisns

from equation [II0) is also symmetric. Using this symmete identity: = I, ,,, for which we haveCr.in = Crnaz = 1,

and the representatiofi; = (1 + v) + Z;, we conclude that andy = 1. Another well-known matrix family satisfying these

P[Z; > 1] > 1/2. Applying LemmadR anfll3, we concludeconditions are Toeplitz matrices.

that ]}»[gi(g) # S4(B*)] > 1/2 as claimed. Note that this For a positive definite symmetric matrit, we define

claim holds for any sample size. 1 .
We prove the claim (b) by analyzing by using Lemia 3(b)O-Z(A) T2 (Aii + 45 —2435), andpu(4) := e A

In order for the Lasso to recover the correct signed suppert, (27)

must havezs = sign(3%), and the conditiosign(5; +A;) = We note thatd = 0 implies that|A4;;| < /A;A;;, and hence

sign(;) must hold for alli € S. Without loss of generality, that p,(A) > 0, and moreover

let us assume that; € (0,g;(\,)). We then have 1
pe(A) < gmax(VAu+ V4;)” < pulA).

~ 1 11
ﬁ: +Ai = ﬂ: —gi(An)+6?(—X§Xs) l—ng, ) . )
—_— n n The threshold constants in our result involve the condéion
D; W; covariance matrix of Xg- | Xg), namely
where we have used the definitioRJ11) &f. Since the Sge|s = Ugese — Lges(Tss) ' Tgse = 0. (28)

deterministic quantityD; < 0 by assumption, and theIn particular, we define

noise variable w; is symmetric around zero, we have

P[sign(8: + A;) # sign(87)] > 1/2, which implies that the 0(5) = pe(Xses) and (29a)
probability of success is upper bounded hi2. Craz (2 —7(%))2’

u E c
0.(2) = LSJS)’ (29b)
IV. RANDOM GAUSSIAN ENSEMBLES THRESHOLDS FOR Crnin 72 (%)
SPARSITY RECOVERY wherev(X) € (0,1] is the incoherence parametBr{P6a). It is

The previous section treated the case of a deterministigaightforward to verify that we always have the ineqigsit
de_5|an, which allowed for a relatively straightforward anal_- 0 < 6(%) < 0,(%) < oo, (30)
ysis. We now turn to the more complex case of random design
matricesX € R™*?, in which each rowr;, i =1,...,n is Equality holds for the standard Gaussian ensemble
chosen as an i.i.d. Gaussian random vector with covariareg= I,,), for which we haveC,,;, = Croe = 7 = 1,



and  moreover p;(Yges) = pu(Xses) =1, so that the sequencén,p, k) satisfies
Oc(Ipxp) = Oullpxp) = 1.

n Crnan0?

—_— , (35
Theorem 3 (Achievability). Consider the linear observa- 2k log(p — k) Ak ). 39)
tion model with random Gaussian desid@d) and noise then with probability converging to one, no solution of the
w ~ N(0,02I,x,). Assume that the covariance matricEs Lasso(@) has the correct signed support.
satisfy conditiong26a)and 260), and consider the family of
regularization parameters

< (1=8)6,(2) (1+

Remarks: Again, the simplest case is when the regularization
parameter is chosen from the family{31) for some— +oc.

bp pu(Sses) 202 lo In this case, the inachievability resulf35) is the weakist
An(dp) = \/ £ s g(p)7 (31) that it asserts only that the Lasso fails with high probapili

2
7 for n < 20,()klog(p — k).
for somep,, > 2. If for some fixed > 0, the sequencen, p, k) It is also worth noting that the conditiod{|35) imposes
and regularization sequencg\,,} satisfy restrictions on the choice of,,. In particular, suppose that
n 02Cmi 200(X)0%Crnaz log(p — k)
- 1 9u (1 min 32 2 max
e © LTOGEE =), (2) An n
2
then the following properties holds with probability great — pe(Xse|s) 207 log(p — k).
than 1 — ¢; exp(—ce min{k, log(p — k)}): (2-7)? n

N In this case, the conditiofi.L{B5) is always satisfied, so that t
(i) The Lasso has a unique solutighwith support con- Lasso fails with high probability. The intuition underlgrhis

~

tained withinS (i.e., S(8) C S(8*)). condition is that\,, must be sufficiently large to counteract
(i) Define the gap the sampling noise, which aggregates at fatg/ logpy
—-1/2y2 o2 logk . . .
g An) = aM]|Egs a + 204 ——. (33) To develop intuition for Theoremd 3 ardl 4, we begin by
min Tt stating certain special cases as corollaries, and disgussi

Then if Bpin = I-IéigWN > g(\n), the signed connections to previous work.
supportS. () is identical to S.(3*), and moreover _ _
1Bs — Billoo < g(An). B. Some consequences for uniform Gaussian ensembles

First, we consider the special case of the uniform Gaussian
Remarks: It should be noted that the condition]32) couplesnsemble, in whick = I, Previous work by Donoho [10],
together the required sample sizeand the regularization pa- as well as Candes and Té4 has focused on the special case
rameter\,,. In particular, for the family[{31) of regularization of the uniform Gaussian ensemble (i.&;; ~ N (0,1), i.i.d.).

parameters, the proof of Theordih 3 shows that it sufficesitp the noiseless 2 = 0) and underdetermined setting
have (n < p). These papers analyze the asymptotic behavior of
n (1+¢) 6.(3) (34) the basic pursuit linear prograrill (5), in particular when it

2klog(p — k) 7 oI- = succeeds in recovering a sparse vegtor € R? based on
r an n-vectory = Xg* of noiseless observations. The basic

for some ¢’ > 0. Consequently, if we choose a sequenaesult is that exists a functiorf : (0,1) — (0,1) such that
of regularization parameter§{31) with, — -+oo, then for any vector3* € RP with at mostk = ap non-zeros
TheorenB guarantees recovery with= 20, (X)klog(p — k)  for somea € (0,1), the basis pursuit LP recoves using
observations. More generally, if we choosgin equation[[3l) » = f(a)p observations, with high probability over choice
with a constantp, > 2, then we still obtain recovery with of the random design matrixX € R™*? from the uniform
n = Q(klog(p — k)) samples, although the pre-factor nowGaussian ensemble,
depends on the precise choice’of through the termp,,. Suppose that we apply our results to analyze support re-

Note that the decay rate af, imposes limitations for signed COVery for the noisy version of this problem. For the uniform
support recovery, in particular how quickly the minimumueal Gaussian ensemble, we haye= 1, Cpin = Cpaz = 1,
Buin is allowed to decay, since Theor&in 3(b) guarantees s@d p¢(I) = pu(I) = 1, so that the threshold constants are
cess only iffmim = Q2(\, ). Consequently, with the choide{31)91ven by0e(I) = 6. (1) = 1. Consequently, Theoreris 3 &d 4
with a constant,, and |||E;§'/2"|oo — O(1), TheoreniB shows provide a sharp threshold for the behavior of the Lasso, in
that the Lasso can recover the support of a sighiat R? for that failure/success is entirely determined by whetherair n

which Buin = Q(4 /lo%)' the inequality

n 2

. . . . — > 14 ==
Theorem 4 (Inachievability) Consider the linear observa- 2klog(p — k) + A2k

tion model with random Gaussian desigfld) and noise g satisfied or not. Consequently, we have the following Eoro

2 H 1 . . H
w ~ N(0,0°Inxn). Assume that the covariance matrices safzy for design matrices from the standard Gaussian engembl
isfy conditions(Z&a) through 2&¢). If for some fixedd > 0,

(36)
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Corollary 2 (Standard Gaussian designga) Suppose that correct subset. Of course, assuming that the Lasso cagrrectl
n = vp for somev € (0, 1). Under this scaling, the Lasso canestimates the subsgt, one could estimatg? at oracle rates
only recover vectorg?* with supportk < (1 + o(1)) 21’;’;1). in ¢2-norm by restricting toS; however, the Lasso does not
It fails with probability converging to one for any vectorachieve this optimal scaling in a one-step manner.

0% € RP with k£ = ©(p) non-zero elements.

(b) Suppose that: = ap for somea € (0,1). Then the b comparison to information-theoretic limits
Lasso@) requires a sample size > 2aplog[(1 — a)p] in

order to obtain exact recovery with probability convergittg
one for large problems.

A related question is whether sonmther algorithm—
whether or not is is computationally feasible—could pearfor
consistent subset selection for scalin@s p, k) where the
This corollary establishes that there is a significant dififiee Lasso fails. More specifically, Theordh 3 shows that the hass
between recovery using basis pursdil (5) in the noiselessn achieve consistent subset selection for sample sizes
setting versus recovery using the Las§d (3) in the noiglyat scale with the problem size and sparsityk asn =
setting. When the amount of datascales only linearly with Q(klog(p — k)). Could an optimal algorithm—namely, one
ambient dimensiomn, then the presence of noise means thatat searches exhaustively over égl) subsets—-recover the
the recoverable support size drops from a linear fractian, (i correct one with substantially fewer observations? Simhee t
k = vp as in the work[10Q], [4]) to a sublinear fraction (i.e., initial posting of this work [33], our follow-up work34], [36]
k= O(@), as in Corollan[P). has investigated the information-theoretic limitatiorfstioe

Interestingly, information-theoretic analysis of thisasgity subset selection problem wheh is drawn from the standard
recovery problenj34], [3¢] shows that the optimal decoder—Gaussian ensemble. This body of work shows that for sub-
namely, an exponential-time algorithm that can search diqear sparsity (i.e.k/p — 0), any algorithmrequires at least
haustively over all(?) subsets—has a fundamentally differenf(k log(p—k)) samples to perform consistent subset selection.
scaling than the Lasso in some regimes. In particular, if thehus, up to constant factors, the Lasso performs as well as
minimum valuefi, = 2(,/'%6£), then the optimal decoderany algorithm for sublinear subset selection in the stahdar
requires only a linear fraction of observations & O(p)) Gaussian ensqmble. As Qiscussed following C_orolﬂry 2, for
to recover signals with linear fraction sparsity & ©(p)). the regime of linear sparsity:(p = ©(1)) and suitably large
This behavior, which contrasts dramatically with the Lass¢@lues of the minimum valug,,in, the Lasso doesot always
threshold given in Theorenid 3 afifi 4, raises an interestigghieve the information-theoretically optimal scaling.
guestion as to whether there exist computationally trdetab

methods for achieving this scaling. V. PROOF OFTHEOREM3
We begin with the achievability result for random Gaussian
C. Oracle properties designs (Theorerfll 3). As with the proof of TheorEn 1, the

An interesting question raised by a reviewer is wheth@&Foof is based on the PDW method, and in particular consists

the Lasso solutiond has an “oracle property” [16]. More of verifying the strict dual feasibility check in Step 3, ati

specifically, consider the oracle that knows a priori thepgup Sign consistency check in Step 4.

S of 5*, and then computes the optimal estimatg in the Bgfore proceeding, we note that singec _0(1) under the
sense of minimizing the expectdd errorE||Bs _ @HQ- A scaling of Theoren]3, the random Gaussian mal¥fix has

T ) - bl
natural question is whether the eri®f3s — 3|3 associated rank k with probability one, whence the matriX's Xs is

with the Lasso estimai;@s has the same scaling as this oraclgwertlble with probability one. Accordingly, the conditis of
error. Since the Lasso involves shrinkage (essentiallgyder

Lemmad® and Lemnid 3 are applicable.
to exclude the variables i), one might expect that the
estimate3s would be biased, thereby increasing the meaA. Verifying strict dual feasibility
squared error relative to an oracle. The following corgllar Recall the definition [[28) of the conditional covariance
proved in AppendiXCE, confirms this intuition: matrix Ys.s. We begin by conditioning onXs: since for

Corollary 3. Assume that the covariance matrix satisfie§2chs € S the vectorX; € R" is zero-mean Gaussian
conditions @83) (@BH) and @&d) Under the scaling of (and posmbly cprrelated W|tI5.(5.), we can decompose it into
TheoreniB, there is a constant > 0 such that the Lasso & linear prediction plus prediction error as

{>-error satisfies Xf — EjS(ESS)_ng'i‘EJT,

P[lIBs — 8513 = elApk] = 1-o(1). where the elements of the prediction error veciyr € R”
are i.i.d., with £;; ~ N(0, [Xg¢|5];;). Consequently, condi-
);ioning on Xg and using the definitior{10) of;, we have
Zj = Aj + Bj, where

Remark: Since \2 = Q(“’%), the ¢5-error of the Lasso
exceeds th&@(k/n) ¢>-error that can be achieved by ordinar
least squares restricted to the correct subSseonsequently,
Corollary 3 shows that the one-step Lasso procedure dogs ._ 7T T —1y w
not have the oracle property, in that #is-error is larger than w = E; {XS(XS Xs) 25 + HXSL()\nn)}’ and (372)
what could be achieved by a method that knew a priori the, := ¥,5(3gs) 'Zs. (37b)
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By the mutual incoherence conditidn (26a), we have form @31) of \,, it is equivalent to have

. — n 2p,0% log(p —k
Jnéas}c{ |B]| - (1 ’Y). (38) 1—+6 - 29u(2)k 10g(p B k) i p’72 ¢P_Pg“(12)a2 log)P

Conditioned onXs and w, the vectorE; does not depend ) v % "
on the subgradient vectafs; this subgradient, determined in = 20,(X)klog(p — k) + n %_).
Step 2 of the PDW method, is a function only &% andw, ¢p  logp
since it is obtained from the solution of the restricted loassor after further manipulation, to have
program (D). n 0 (%)

Since var(E;j) = [Sseislj; < pu(Ese)s), conditioned logw — k) fledp) > = (40)
on Xg and w, the quantity4; is zero-mean Gaussian with P

. —1 1
variance at most where f(e, ¢p) = Mil%. We note that for any fixed

1o,
e € (0,1/2), the functionf is increasing forg, € [2,00).
1 .. XTXg . w9 Therefore, we have

= pu{ﬁzgj(ST) 1,25-1- }lﬂx§(m)}’2}v N 5y — 9 - 1—¢
fledn) 2 f62) = = -1 = 7.

Recall the lower bound(84) on, specified by some fixed

where we have used the Pythagorean identity, and introducéd> 0. By choosinge € (0,1/2) sufficiently small so that

the shorthangb, = p,(Xs-s). The following lemma, proved (3¢ > (1 + &')~', the condition [3%) implies that the

in Appendix [, controls the random scalinty/,, of this condition [4D) holds.

variance bound:

1 w
var(4;) < pul|Xs(XEXs) 125+Hx§(m)|\3

M,

Lemma 4. For any ¢ € (0,1/2), define the event : .

T(e) = {M,, > M, ()}, where B. Sign consistency antl, bounds

o 8 k k o2 We have established that with high probability under the

M, (€) := (1+max{e, o \/;}) (ﬁ+)\2—n) (39) conditions of Theorerfll3, the Lasso has a unique solution
B e e n with supportS(3) C S(5*). We now turn to establishing the

ThenP [T (€)] < 4exp(—c; min{ne?, k}) for somec; > 0. sign consistency and,, bounds. From its definitiod{11) and

o o _ . applying triangle inequality, the random variablex;c s | A,
We exploit this lemma by conditioning off (¢) and its g upper bounded by

complement, thereby thaP[max;cgs- |A;| > ~] is upper ) ) .
bounded by Ml (S XEXs) " sgn(B5) oo+ (- XEXS) =X wlloc

TC : 2
P[grelas)c('Aj' > v | T¢(e)] + 4exp(—cy min{ne*, k}). F 2

Conditioned or7 (¢), the variance ofi; is at mostp, M, (¢), In order to analyze the first term, we require the following
so that by standard Gaussian tail bounds, we obtain the uplggama.

bound Lemma 5. Consider a fixed non-zero vecterc R* and a

2 . n s
]p[m%x Aj| >~ [ T(e)] < 2(p—k) exp(— 7 random matrixi¥ € R™** with i.i.d. elementdV;; ~ N(0,1).
cge

2puM, ()’ Under the scalingn = Q(klog(p — k)), there are positive

Since the assumptions of Theorin 3 ensure at= o(1) Constants: andec; such that for all > 0:

and1/(A\2n) = o(1), we are guaranteed that,,(¢) = o(1). 1

Therefore, the exponential term is decaying in our tail lhun P[H[(EWTW)_I — Iixi] 2 Jloo = €1|2]loo)

we need the decay rate to dominate (pe- k) term from the < dexp(—co min{k, log(p — k)}).
union bound. Using the definitiod_{89) and following some N

algebra, we find that it is sufficidhto have Using this lemma, we can bourtd as follows. By triangle

n 2 o2C. . inequality, we have the upper bourfg} < G1 + G5, where
> pu 2k10g(p—k){1+ mzn}

1+e€ Crin 7y A2k G, = ||(ESS)*1sgn(5:§)HOO,
Thus, we have established the sufficiency of the lowggg
bound [3R) given in the theorem statement. 1
Now let us verify the sufficiency of the alternatve G2 = H[(ngXS)*l—(ESS)*l} sgn(/35)|l -
bound [3%). Using the definitiod {2Bb) @f,, and the given

The first term is deterministic, and bounded as
G1 < (I(Zs5)7"2||o0)?, so that it remains to bound,. By

niti _ 1/2 xk
SHere we have used the fact that for any fixext 0, we haveS./k/n < ¢ Fjef|n|t|on, we haveX_S = Ws (Sss)"/ ' whereWs € R
for n sufficiently large. is a standard Gaussian random matrix. Consequently, we can
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write VI. PROOF OFTHEOREMMA

_ 1 _ 1/
Gy = [1Z55" [(CWEWs) ™" = Ixk) s Bl

IN

~1/2 1 ~1 —1/27
125" oo ||[(gWSTWS) — Tk ] D8 *Bll oo We establish the claim by showing that under the stated
conditions, the random variableax;cs- Z; exceedsl with

where we have introduced the shorthabd= sign(f3). probability approaching one. By Lemmiks 2(c) 4id 3(a), this

Applying Lemmab withz = $5¢/*5, we obtain that event implies failure of the Lasso in recovering the support
12 From the proof of Theorefl 3, recall the decompositiod (37)
P[G2 > 1255 o 12l | Z; = Aj + B;. Using the bound[(38) on thé3; terms, it

< 4exp(—comin{k,log(p — k)}). suffices to show thatnax;cg- A; exceeds(2 — ~) with

. - probability approaching one.
Note that sincel||b||.c = 1, we have the upper bound

2]l00 < |||E§§/2|||oo- Putting together the pieces, we conclude, From LemmdR, in order for the Lasso to achieve_ correct

that signed support recovery, we must haye= sgn(5%). Given
1/202 this equality and under conditioning diXs,w), the vector

P[Fy > s [|Sgg 1%, ] < 4exp(—ce min{k,log(p—Fk)}). Age is zero-mean Gaussian with covariance mabdx X s s,

(41)  where the random scaling factﬂNJn has the form

1 . N XTXe . N w
Turning to the second term,, conditioned onXg, the k- {ﬁ sign(B%)7( Sn 5) L sign(8%) + HHX; (ﬂﬂﬁ}

dimensional random vectorw := (1XIXg)'ixXIw _ _ _
is zero-mean Gaussian with variance at moge following lemma, proved in AppendiX 6, provides control
52(X) := Z||(X% Xs)~!|. Define the event on this random scaling:
T(Xg) = {52()() > 902 } Lemma 6. For any ¢ € (0,1/2), defi_n_e the event
nCrin T (e) = {M,, > M, (e)}, where for some positive constant

By the bound [[B0) from Appendix[dK, we have ek if k=001
P[T(Xs)] < 2exp(—n/2). By the total probability rule, 2n ’ ]
we have M, (¢) := < (1 — max{e, %\/%}) (Cmfm‘ — + %n)

A
Pl >t < P[Fy>t | T9(Xs)] +PB[T(Xs)). if k/n = o(1)

Conditioned orn7 “(Xy), the randon; variablé is zero-mean ThenP[Z (¢)] < 4exp(—c; min{ne?, k}) for somec; > 0.
Gaussian with variance at mo% so that by Gaussian

tail bounds, we have Conditioning on the complemeft“(¢), we obtain
Crninnt?
~ _ Ymin P A 9 _
]P)[Hw”OO Z t] < 2 exp( 16252 ) [?é%)c( j > 7}

5 , . o , >P A >2—~ |T€ 1-2 —c; mi 2 k).
Settingt = 20,/ %%k yields that this probability vanishes ~ [?éasx i > 27 | Z(e)] {1-2exp(—cy min{ne’, k})}

[op
at rate2 exp(—cn). Overall, we conclude that The remainder of our analysis studies the random variable
5 max;ese A; conditioned orZ “(e). We first note that it suffices
IP’[FQ > 20 o logk} < dexp(—cin). (42) to show thatP[maxjcsc A; > 2 — 7] goes to one, where
Cmin the vectorA € RP~* is zero-mean Gaussian with covariance

Finally, combining bounds[{31) an@{42), we conclude thdtl,(€)Xs¢|s. Lettinge; & RP—F denote a unit vector with
with probability greater than — ¢} exp(—c, log k), we have in positioni, observe that for each# j, we have

Al < e lsol/2p2 4 og [ logk E[(Ai = A7) = Ma(9) (i = e)) Bseysles — ¢y)
fgleasﬂ il < ahlZes 7l + Con = g(An). > 2M, () pe(Xses),

where we have used the definitidn(27) @f Consequently,

if we let {4;,j € 5S¢} be ii.d. zero-mean Gaussians with

_ Consequently, we have shown that the candidate dual veqigtiancens () pe(Ese|s), then we have established the lower
Zs = sign(B%) leads to a candidate primal solutigty such bound

that L L
max|Ail = [|8s = Bzl < g(An), E[(Ai - 4% > E[(4; - 4;)%),

with high probability. As long a3 > g(\,), the pair Therefor_e, the Sudgkov-l_:ernique inequglity [25] implikatt
(Bs, z5) are primal-dual feasible; by Lemnia 2, they are th1® maximum overd dominates the maximum ovef: more
unique Lasso solution, and show that it successfully remov@'ecisely, we haV@[ﬁ%%’E Aj] = E[%%?E A;]. The {4;} are
the signed support. i.i.d., so that by standard asymptotics of Gaussian extreme
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order statistics [25], for alll > 0, we have or equivalently, such that

E[?é%)ci A’Z{g] > E[%as)f AJ] (43) pl(ESC|S) [1 CmawUQ] 2k10g(p - k)
Cmaz(2 - '7)2 A%k n
> \/(2—’/) M, (€) pe(Xge|s) log(p — k), (2 —7) + ]2
> .
oncep — k is large enough. 2-721-v/2)(1—-¢)

. ] ~ Recall that under the assumptions of Theo-
We now claim that the random vanahh%x Aj is sharply  am @, the sample size is bounded above as
Je c 1

concentrated around its expectation. n < 20,(1+ C’g+7f2)(1 —d)klog(p— k) for some fixed
6 > 0, wheref, = %. Substituting in these
Lemma 7. For anyn > 0, we have relations, we find that find t%at after some algebraic
B B e manipulation, it suffices to choosee (0,1/2) andv,n > 0

P A;—E A; <2 _—

\%asx j [?éas)g il >n| < 2exp( 2Mn(€)pu)’ such that 2

n s 1 [(2—7) +n]
wherepu = pu(Eses): =5 = E—(-v2)0-0o

. . ) Note that the left-hand side is strictly greater thanOn

The _proof, prowded_ n Appendli;] l, makes use of cong,q right-hand side, the quantity € (0,1] is the mutual
centration results for Lipschitz functions of Gaussiand@n ;. oherence constant whereas, 7 are parameters that can

vectors [25], [24]. be chosen if0, 1/2). By choosing, v, n) to be strictly positive

Combining the lower bound{#3) and the concentratiogft arbitrarily close 00, we can set the right-hand side
bitrarily close tal, thereby satisfying the required inequality.
statement from LemmAl 7, for all,n,e¢ > 0, we have the y y fying q q y

lower bound
max A; > /(2= v) M, (€) pr(Eseis) log(p — k) =7 (44) VII. | LLUSTRATIVE SIMULATIONS
i il _ o .
W:thnflro?tagﬂg?lcggeg e;sig?):jish%[ﬁzpb(ounQdM"(E)pu). Conse In this section, we provide some simulations to confirm
g Y. the threshold behavior predicted by Theordths 3 @nd 4. We
2[(2—7)+n)? consider the following three types of sparsity indices:
20, (6) p(Bsrs) loalp — ) = ZLCDHIE ) g three types of sparsity
— UV . . .
, (@) linear sparsity meaning thatt(p) = [ap] for some
using choices ofn,e for which M’(’W — 400 as a € (0,1);
(n,p, k) — +oc. - (b) sublinear sparsitymeaning thak(p) = [ap/(log(ap))]

for somea € (0,1), and
Case 1:If M, (¢) — 400 or M, () = ©(1), then we may (c) fractional powersparsity, meaning that(p) = [ap’]
setn? = &M, () log(p — k) for somed’ > 0. If & > 0 is for somea, § € (0,1).

fixed but chosen sufficiently close to zero (as a functiomw,of For all three types of sparsity indices, we investigate the

e and other constants), then from the lower bodund (44), there . ; : :
is some constant, > 0 such that success/failure of the Lasso in recovering the sparsitiepat

where the number of observations scales as

P[%z?c(/lj > cqn/log(p — k)] — 1. n = 20klog(p— k),

) S where thecontrol parameted is varied in the interval0, 2.4).
Case 2:The other and more delicate possibility is thagqr 5| results shown here, we fixed = 0.40 for all three
M, () = o(1). In this case, we may choose any fixegnsembles, and sét= 0.75 for the fractional power ensemble.
n > 0, and have the guarantee thgt/M,,(¢) — +oo. Note \ye specified the parameter vectsr by choosing the subset
M,,(e) = o(1) is possible only ifk/n = o(1), so that the g randomly, and for each € S setting 3 equal t0-+Smin
second line in the definition a¥Z,, (¢) from Lemme® applies. o —Bumin With equal probability, andg;f — 0 for all indices
Moreover, for any fixed > 0, we have%\/g <eoncen j¢S.For the results shown here, we fixgg, = 0.50, but
is sufficiently large, so we include only the terms involving have also experimented with decaying choices of the minimum
Substituting this quantity into inequalitf_{#5) and perfoing value. In addition, we fixed the noise level = 0.5, and

some algebra, we find that it suffices to choose fixeg > 0 the regularization parametey, = 1/ 220k log(=k)) i g
ande € (0,1/2) such that cases. For this choice of,, Theorenll predicts failure with
1 o2 klog(p — k) high probability for sequence@:, p, k) such that failure for
(2—v)(1—¢) [C— + W}pg(zsqs)i sequences such that
max n n

> (2= +nf Foao =y < O
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Identity; Linear Identity; Sublinear Identity; Fractional power
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—4—p = 256 ——p =256 —4—p = 256
—=—p =512 —=—p =512 —=—p =512
%05 1 15 2 % 0s 1 15 2 05 1 15 2
Rescaled sample size 8(n, p, k) Rescaled sample size 8(n, p, k) Rescaled sample size 8(n, p, k)
(a) (b) (©)

-~

Fig. 2. Plots of the rescaled sample size= n/[k log(p — k)] versus the probabilitf’[S+ (5) = S+(8*)] of correct signed support
recovery using the Lasso for the uniform Gaussian enseridaleh panel shows three curves, corresponding to the probiess

p € {128, 256,512}, and each point on each curve represents the averag60ofrials. (a) Linear sparsity indext = ap. (b)
Sublinear sparsity indek = ap/ log(ap). (c) Fractional power sparsity indéx= ap® with § = 0.75. In all cases, the parameter
e :13.40. The threshold in Lasso success probability occu®at 1, consistent with the sharp threshold predicted by Theof@#ms
and[3.

whereas Theorefd 3 predicts success with high probability fof # = 1 show the numerical values of the theoretical upper

sequences such that and lower bounds on the threshold—thatdg(>) andf,(X),
n as defined in equatiod_[R9). Once again, these simulations
2k log(p — k) 0u(2). show good agreement with the theoretical predictions.

We begin by considering the uniform Gaussian ensem- Vil

ble, in which each rowz; is chosen in an i.i.d. manner . . .
from the multivariateN (0, I,,x,) distribution. Recall that for The problem of recovering the sparsity pattern of a high-

the uniform Gaussian ensemble, the threshold values SiE'€nsional vectors” from noisy observations has impor-

6.(I) = 6,(I) = 1. Figure[® plots the control parameter ofant a!pplications in signal denoising, colmpr_essed sensing
graphical model selection, sparse approximation, andesubs

rescaled sample siz@€ versus the probability of success, . s ) )
for linear sparsity (a), sublinear sparsity pattern (b)d ar'Felectlon.Tms paper focuses on the behaviah efegularized

fractional power sparsity (c), for three different problsires quadratic programming, also known as the Lasso, for estimat

(p € {128,256, 512}). Each point represents the average dpg such sparsity patterns in the noisy and high-dimensiona

200 trials. Note how the probability of success rises rapidi§ctting. We first analyzed the case of deterministic designs
from 0 around the predicted threshold poifit— 1, with the and provided sufficient conditions for exact sparsity recgv

sharpness of the threshold increasing for larger problegssi using the Lasso that allow for general scaling of the number o

. . . observations in terms of the model dimensignand sparsity
We now consider a non-uniform Gaussian ensemble—in

: . . X . . index k. In addition, we provided some necessary conditions
particular, one in which the covariance matriéeare Toeplitz . .
. on the design and signal vector for support recovery. We
with the structure

then turned to the case of random designs, with measurement

D IscussION

1 I T Vi vectors drawn randomly from certain Gaussian ensembles. Th
K T main contribution in this setting was to establish a thrédho
Yy = I N , (46) of the ordern = ©(klog(p — k)) governing the behavior of
: : : : : : the Lasso: in particular, the Lasso succeeds with proltabili
=1 /L'3 M'2 M 1 (converging to) one above threshold, and conversely, li¢ fai

. - _ with probability one below threshold. For the uniform Gaus-
for somey. € (—1,+1). The maximum and minimum eigen-sian ensemble, our threshold result is exactly pinned dawn t
values (pin and Crq,) Can be bounded using standarg, — 2 klog(p — k) with matching lower and upper bounds,

asymptotic results on Toeplitz matrix famili¢s9). whereas for more general Gaussian ensembles, it should be
Figure[3 shows representative results for this Toeplitzlfam possible to tighten the constants in our analysis.
with © = 0.10. Panel (a) corresponds to linear sparsity There are a number of interesting questions and open

k = ap with a = 0.40), panel (b) corresponds to sublineadirections associated with the work described here. Alghou
sparsity & = ap/log(ap) with a = 0.40), whereas panel the current work focused exclusively on linear regressiois,
(c) corresponds to fractional sparsit§ (= ap®7). Each clear that the ideas and analysis techniques apply to ailger |
panel shows three curves, corresponding to the problers siirear models. Indeed, some of our follow-up wdBg has

p € {128,256,512}, and each point on each curve represengstablished qualitatively similar results for the caseogjfidtic
the average 0200 trials. The vertical lines to the left and rightregression, with application to model selection in binary



15
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Fig. 3. Plots of the rescaled sample size= n/[k log(p — k)] versus the probabilitf[S+ (3) = S+(8*)] of correct signed support
recovery using the Lasso for the Toeplitz family](46) of ramddesign matrices witly = 0.10. Each panel shows three curves,
corresponding to the problem sizpsc {128, 256,512}, and each point on each curve represents the averagéOofrials. (a)
Linear sparsity indexk = ap. (b) Sublinear sparsity indek = ap/log(ap). (c) Fractional power sparsity indeéx = ap® with

6 = 0.75. The vertical lines to the left and right &f = 1 show the theoretical upper and lower bourtd§X>) and 6,(%), from
equation [ZP).

Markov random fields. Another interesting direction comser Naturally, any zero-mean Gaussian variable with variaritce
the gap between the performance of the Lasso, and the matisfies the boundB{¥47) addi48). In addition to the Ganssia
formance of the optimal (oracle) method for selecting stésecase, the class of sub-Gaussian variates includes any edund
In this realm, information-theoretic analy§&4] shows that it random variable (e.g., Bernoulli, multinomial, uniforngny
is possible to recover linear-sized sparsity patteins-(ap) random variable with strictly log-concave density [2], [24
using only a linear fraction of observations (= O(p)). and any finite mixture of sub-Gaussian variables.
This type of scaling contrasts sharply with the order of the For future use, we also note the following useful property
thresholdn = O(klog(p — k)) that this paper has establishedLemma 1.7, [2]): if Z1,..., Z, are independent and zero-
for the Lasso. It remains to determine if a computationaliyjean sub-Gaussian variables with parametérs. ., o2, then
efficient method can achieve or approach the information-
theoretic limits in this regime of the triplét, p, k). Z Z; is sub-Gaussian with paramefgt_, 0.  (49)
=1
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in the observation model = X 3* + w and performing some
) ) ) algebra yields equatiolil(8), thereby establishing Lerhad. 1(
A. Sub-Gaussian variables and tail bounds By standard duality theory [1], given the subgradiént R?,

Parts of our analysis focus on noise vecters R" in the any optimal solutions € R? of the Lasso must satisfy the
linear observation mod€Il(1) that have i.i.d. elementsBatig complementary slackness conditiéh3 = ||3|1, which can
a sub-Gaussian tail condition. hold only if 3; = 0 for all indices;j such thatz;| < 1, which

) G e .
Definition 1. A zero-mean random variabl¢is sub-Gaussian esta-ll?hshes. L.emmE] 1(0). Lastly,. ]XS(E)XS(ﬁ) is strictly
if there exists a constamt > 0 such that positive definite, then when restricted to vectors of thenfor

(55@,0), the Lasso program is strictly convex, and so its
Elexp(tZ)] < exp(c?t?/2) forallt€R. (47) optimum is uniquely attained, as claimed in part (c).

APPENDIX

By applying the Chernoff bound and optimizing the exponent,
this upper bound[{37) on the moment-generating functiéh Proof of Lemm&l2
implies a two-sided tail bound of the form (a) Suppose that steps 1 through 3 of the PDW construc-
22 tion succeed. Then, we have demonstrated a pair of vectors
PllZ] > 2] < QGXP(_F)- (48) 3 = (Bs,0) € R? and # € RP, such thats € 9||3||. It
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remains to check that these vectors satisfy the zero suiegtadthe Lasso has a solution with the correct signed support, as
condition [8), so that3 is actually an optimal solution to the claimed. Conversely, if the Lasso has a solutigwith the
Lasso. Writing out this condition in block form yields correct signed support, thel; = 3, — 55, and condition[(TI3)

must hold, thus completing the proof of Lemida 3(b).
1[XEXs X{Xse| [Bs— B
n | XI.Xs X Xge 0

T
sz le) ) - ] e
n XSC wge ZSc 0
E. Proof of Corollary[B

Since the paif(s, Zs) was obtained by solving the restricted
convex programf{9), they must satisfy the top block of these o shown in the proof of LemmBl 3 (in particular, equa-

equations. Secondly, the bottom block of equations must alg,, (51)), when the Lasso correctly recovers the signed
be satisfied, since we used these sub-gradient conditionSER)port set, its error is given by

solve forzg. in Step 3 of the PDW method. Lastly, the strict

dual feasibility guaranteed in Step 3 implies uniquenesisigu Bs — gy = (ngXS)_l [lX;*fw — Ao sgn(85)].
the assumed invertibility o Z X, and Lemmdl1(c), which n n
completes the proof of Lemnid 2(a). By triangle inequality, the quantityj3s — B%|l2 is lower

(b) Suppose that in addition, the sign consistency contitipounded by
in Step 4 is satisfied. Then sincg was chosen as an
e.lemgnt of the subdiﬁerenti@||_|65||1 in Step 2, we musthave ) || (ngXS)fl sen(85) s — | (lX§X5)71 lXTw”2
sign(Bs) = sign(3%), from which LemmdR(b) follows. n ) n . n

(c) Turning to Lemmdl2(c), it is equivalent to prove the > \, vk Amin [(=XEXs) 7 — (= XEXs) = XEw]s.
following assertion: if there exists a Lasso solutiBne R” n n n
with g = 0 and sign(fs) = sign(g%), then the PDW T T,
method succeeds in producing a dual feasible vegtaiith
Zg = sign(gg). Since X1 X is invertible by assumption, Since X2 X /n is formed by Gaussian random matrices
the vector3s must be the unique optimal solution to thewith k¥ < n, then the bound[1%9) in Appendx]IK implies
restricted progrant]9), so it will be found in Step 1 of the PDWhat A,in[(5 X Xs)™'] > 55+— with probability at least
method. Sinceign(fs) = sign(5%) by assumption, the vector 1 — 2 exp(—n/2). Consequently, we have
zs = sign(Bg) is only subgradient that can be chosen in Step AR
2. Since(fs,0) is an optimal Lasso solution by assumption, Py < —
then there must exist a dual feasible vectgr such that 9Cmaz
(sign(Bs), Zs-) satisfy the zero subgradient conditidd (8). As for the second term, conditioned akis, the quantity
(éXgXS)_I%XSTw is zero-mean Gaussian with covariance
Z(XEXg/n)". Letting w € R* be a standard Gaussian

3 vector, we can re-expre§s as

The vectors(8s, Zs) determined in Steps 1 and 2 of the

| < 2exp(—n).

D. Proof of Lemmdl3

2

PDW must sati_sf_y_ the top block of equatidn(50). Using the T} = G—(X?Xs/n)*l T
assumed invertibility othXS, we may solve fods — 3% as 9 ||72H2

. g w _
follows: X X < —2I(XEXs/n) " -

~ * —1 -

Bs —Bs = (EXsTXS) [EXEU’ —Azs]. (51)  Again applying the boundT80) from Append K, we have
Similarly, the vectorzg. determined in Step 3 of the PDW PI(XT X o)1 > 9 < 9 _
must satisfy the zero-subgradient conditidng (50). No& ith (X5 Xs)™"/mll2 2 C’mm] s Zexp(-n).

enters only in the bottom block of equations. Consequent

: ; E’y x2-concentration, we havi[||w||% > 2k] < 2 exp(—c2k).
we may solve forZs. in terms of3s — 5% andzg as follows:

Putting together the pieces, we conclude that the second ter

~ —1, w satisfiesP[T, > ,/L822k ] < 4 —c1k)].
B = XL |Xs(XEXe) Tz lyu ()| (62) (T2 >/ o] < Alexp(=c1k)]

Consequently, with high probability, we have the lower
The elements of this vector are the variab{és} defined in  bound

equation[ID). Consequently, the claim of Lenftha 3(a) follow AR 1802k

Now suppose that the conditioi{13) holds. Note that the HBS - Bl > o — g
vector A from equation [(Il1) is obtained by solving for 9Cmaz Cminnt
Bs, as in equation[{31), but assuming that = sign(3%). AV cs
But if condition [IB) holds, then we can conclude that the - 9C 1= ,\n\/ﬁ]
optimal solutiongs to the restricted progranil(9) does satisfy > e VE,

sign(fs) = sign(B%), so thatzs = sign(B%) is indeed the
only valid choice of subgradient vector. This certifies thatince\,/n — +oo.
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F. Proof of Lemm&l4 uy,u) € R¥, we have

Sincelly is an orthogonal projection matrix, we have  [F(u1) — F(uj)] = |(u1 — uy)" Dg|
< o
Dowe oL w3 < flur = w2 1DY: llgll2
H Xé()\nn)HQ = )\277, n . k
- 228 2 i < 8VE/my( D2 llua = w2,
Noting that||w]||3/0* is x* with n degrees of freedom, by the —
bound [52h), we have
) = 8Vk/n VEk = 1||zllos lur — uill2,

w o2 } 3ne?

2
P["HXé(Ann)"z > (1+ 6))\%” < 2exp(=—7=) where we have used the fact thatls = /S5, 22, by the
Turning to the first term defining/,,, by applying Lemm&19) orthonormality of the{u,} vectors.

from AppendixCB—more specifically, in the forni{d8a)—we Since E[F'(u1)] = 0, by concentration of measure for
obtain Lipschitz functions on the sphere [24], for alb> 0, we have

1 g XEXs o, 8 ko lzsl3 P[|F S ¢ < 9 — e (k—1 o

LEEEEN s < (/) p e 1Pl > Hl] < 2exp (= erlk = 1))

8 k k nt?
— = 2 —
S (1 * szn \/;) ncku'n7 b ( “ 128k>
with probability greater tharl — 2exp(—k/2), which com- Taking union bound, we have
pletes the proof. p r . < nt2 low k
[max [F(u)| > tzlla] < 2exp (= o1 g5 +logk).

G. Proof of Lemmals Sincelog(p — k) > logk, if we sett = 221950=k) hen this

probability vanishes at rateexp(—cs log(p inlc)). But since
We begin by diagonalizing the random matrixa = Q(klog(p — k)) by assumption, the quantityis order
(WTW/n)=1, writng (WTW/n)=' — Iyxx = UTDU, one, so that the claim follows.
where D is diagonal, andJ is unitary. Since the distribution
of W is invariant to rotations, the matrice® and U are
independent. Sincd Dz = [[(WTW/n)~! — Ixk|2, the
random matrix bound{5Ba) from Append} K implies that H. Proof of Lemm4l6

Pl|D]2 > 8vk < 2 —k/2).
1Dl /nl < Zexp(-k/2) We begin by proving part (a), which requires only that
We condition on the evenf||D|. < 8+/k/n throughout the £ <n (and not thatk/n = o(1)). Using only the first term

remainder of the analysis. defining M,,, we have
For a fixed vector € R*, we define, for each=1,...,k, T
H T 1 - s\T XSXS —1 *
the random variable M, > —sign(Bg)*( )~ sign(B%)
n n
V; = f'UTDUz = ziuiTDui—i—uiTD[ZZgug}, > k _ 1
£ n | X5 Xs/nl2
where u; is the j' column of the unitary matrix/. Ob- > E_1 ’
serve that the lemma statement concerns the random variable 1 9Cmaz
max; |V;]. Since the{V;} are identically distributed, it sufficeswhere the final bound holds with probability at least
to obtain an exponential tail bound di¥; > t}. 1 — 2exp(—n/2), using equation[{39) from Appendix K.
Under our conditioned event gfD||2, we have For part (b), we assume that/n = o(1). In this case,
& can apply the concentration bould{b8b) from Appeidix K to
Vil < 8Vk/n|z|+ UlTD[Z Zew]- (53) conclude that there are positive constantses such that
=2

XIXs

Consequently, it suffices to establish a sharp talil bound% sign(85)" ( )~ sign(85)
on the second term. Conditioned oP and the vector
k k : 1 k 8 k
g =Y y_o zeug, the random vectow; € R” is uniformly > = (1 - _),
distributed over a sphere ih — 1 dimensionl Now con- maz Tt Crnin ¥ 10
sider the functionF'(u;) := uT Dg; we claim that it is Lip- with probability greater than — 2 exp(—k/2).
schitz (with respect to the Euclidean norm) with constant at Tyrning to the second term i,,, sincell . is an orthog-
most8+/k/n vk —1|1z[|. Indeed, given any pair of vectors,na| projection matrix with rankn — k) andw ~ N(0, 021) is
multivariate Gaussian, the variab|&l y . (w)||3 /0 is x> with
60ne dimension is lost since; must be orthogonal tg € R, d = n— k degrees of freedom. Using the tail bouRd{64b), for




anye € (0,1/2), we have

2

Py (=) < 0= D) (-5
< 26XP(-%)-
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K. Spectral norms of random matrices

Here we collect some useful results about concentration of
spectral norms and eigenvalues of Gaussian random matrices
We begin with the following basic lemma [7]:

Overall, we conclude that with probability greater thahemma 8. For k < n, let U € R™** be a random matrix

1 — 4exp(—cy min{ne?, k}), we have

—~ 8 k k o?
> _ _°2 .z Lz
M, > (1—max{e, - \/;}) (Cmaz - + )\12171)7

as claimed.

I. Proof of Lemmdl7
Consider the functiorf : RP~* — R given by
T

flu) - (€) max e \/Zse|s ul,

wheree; denotes the unit vector withh in position j, and

M

2En

\/2se|s Is the symmetric matrix square root. By construcki ~ IV

tion, for a Gaussian random vecter ~ N(0,I), we have

from the standard Gaussian ensemble (il&; ~ N(0,1),
i.i.d.). Then for allt > 0, we have

1
]P’[|||EUTU — Iixkllz > 6(n, k,t)] < 2exp(—nt?/2),

whered(n, k,t) := 2(\/§ +1t) + (\/§+ t)2.

This result can be adapted easily to random matri¥es
drawn from more general Gaussian ensembles. In particular,
for a positive definite matrix\ € RF**  settingX = UVA
yieldsn x k& matrix with i.i.d. rows,X; ~ N(0,A).

(55)

Lemma 9. For k < n, let X € R™* have i.i.d. rows
(0, 7).
(a) If the covariance matrixA has maximum eigenvalue

flw) 4 max;ege ﬁj. We now bound the Lipschitz constant ofC,,,., < +oo, then for allt > 0,

f.Foreachj = 1,...,p — k and pairs of vectors, v € RP—*,
we have
() =] = VM, (e) max lej \/Ss1se (u —v)|
(a)
< VM, (e) max 6?\/25*6\5"2 u =2
(b)

VAL () pu(Ssers) llu = vz,

P[leTX Al > Casdln, k,1)] < 2exp(—nt?/2). (56)
n

(b) If the covariance matrixA has minimum eigenvalue
Chmin > 0, then for allt > 0,

XTX _ _ o(n, k,t
B[ )1 oamy, » 2k

< 2exp(—nt?/2).
(57)

n

where inequality (a) follows by Cauchy-Schwartz, and in-

equality (b) follows since

lej \/Zseisl3 = € (Bses)ej < pu(Sseis),

using the definition{A7) ob,,. Therefore, by Gaussian concen-

tration of measure for Lipschitz functiorig4], we conclude
that for anyn > 0, it holds that
A Al >
Pll max A; — Elmax A;]| > ]

,,72

2Mn(6)pu(25c|S>)’

< 2exp(—

as claimed.

J. Tail bounds fory2-variates

Given a centralizeg?-variateX with d degrees of freedom,
then for allt € (0,1/2), we have

P[X >d(1+1)] < exp(—%dtQ), and (54a)

PX <(1-t)d] < exp(—%dtz). (54b)

The bound[(54a) is taken from Johnstone [21], whereas the

bound [54b) follows from Laurent and Massart [23].

Proof: (a) Letting v/A denote the symmetric matrix
square root, we can writ& = U+/A whereU € R™** is
standard Gaussiai/(; ~ N(0, 1), i.i.d.). Thus, we have
In™' XX = All2 = [VA[RT'UTU — 1]VA],

which is upper bounded bg,.. |[n~t UTU — I|2, so that
the claim [Gb) follows from the basic bound]55).

(b) Letting U € R™** denote a standard Gaussian matrix, we
write

XTx _ _ _ UTu . _ _
IS = = AT (=) = Do A2,
_ 1
< WUTU/m)T = Dokl g
so that claim[[57) follows by applying the basic bouhdl (55).

O

Finally, we state some particular choicestdhat are useful
for future reference. First, if we sét= ,/k/n, then since
k/n <1, we have

S(n,k,\/kjn) = 4{
Consequently, we obtain specialized versions of the

k Kk
_+_
n o n

k

n

<

8
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bounds[(5b), of the form

[18] J. J. Fuchs. Recovery of exact sparse representatiotie ipresence of
noise. IEEE Trans. Info. Theory51(10):3601-3608, October 2005.

XTx k [19] R. M. Gray. Toeplitz and Circulant Matrices: A Review.echnical
P“” - 2|||2 > 8Cax \/j] <2 exp(—k/Q), and (585{) report, Stanford University, Information Systems Laborgt 1990.
n n [20] J. Hiriart-Urruty and C. LemaréchaConvex Analysis and Minimization
XTx 1 1 8 k Algorithms volume 1. Springer-Verlag, New York, 1993.
]P“"( " ) - (E) |||2 > . E] < 2exp(—k/2). (58[3[)1] I. Johnstone. Chi-square oracle inequalities. In M. @enst,
min

C. Klaassen, and A. van der Vaart, editd@sate of the Art in Probability
and Statistics number 37 in IMS Lecture Notes, pages 399-418.
Institute of Mathematical Statistics, 2001.

K. Knight and W. J. Fu. Asymptotics for lasso-type estors. Annals
of Statistics 28:1356-1378, 2000.

B. Laurent and P. Massart. Adaptive estimation of a gatéc functional
by model selectionAnnals of Statistics28(5):1303-1338, 1998.

M. Ledoux. The Concentration of Measure Phenomenbtathematical
Surveys and Monographs. American Mathematical Societyiéence,
RI, 2001.

M. Ledoux and M. Talagrand?robability in Banach Spaces: Isoperime-
try and ProcessesSpringer-Verlag, New York, NY, 1991.

D. M. Malioutov, M. Cetin, and A. S. Willsky. Optimal spse
representations in general overcomplete basdsat.Conf. on Acoustics,
Speech, and Signal Processinglume 2, pages 11-793—-796, May 2004.

By settingt = 1 and performing some algebra, we obtain
another set of very crude but adequate bounds on the spquze}l
norms of random matrices. In particular, by triangle indifya

we have [23]

[24]

X7 X/nl2 1=l + X7 X/n = 32

<
< Cmam + Cmawé(na ka t)

[25]
with probability greater thaih—2 exp(—nt?/2). Settingt = 1,
we find (using the bouné& < n) thatd(n,k,1) < 8 so that
we can conclude that

[26]

T [27] N. Meinshausen and P. Buhlmann. High-dimensionalplgsaand
Pl X" X/nl2 > 9C e < 2exp(—n/2). (59) variable selection with the Lassdnnals of Statistics34:1436-1462,
2006.
A similar argument yields that [28] A.J. Miller. Subset selection in regressio@hapman-Hall, New York,
NY, 1990.
9 ’ . ) ) )
T -1 29] B. K. Natarajan. Sparse approximate solutions to tems.SIAM
PIXTX/n) " ll2 2 5—] < Zexp(-n/2). (60) [29] el ey e

J. Computing 24(2):227-234, 1995.

R. Tibshirani. Regression shrinkage and selectionthgalasso.Journal
of the Royal Statistical Society, Series38(1):267-288, 1996.

J. Tropp. Greed is good: algorithmic results for spapproximation.
IEEE Trans. Info Theory50(10):2231-2242, 2004.

J. Tropp. Just relax: Convex programming methods feniiflying sparse

REFERENCES [31]

[1] D.P. Bertsekas.Nonlinear programming Athena Scientific, Belmont, [32]

(2]

(3]

(4]
(5]
(6]

MA, 1995.

V. V. Buldygin and Y. V. KozachenkoMetric characterization of random
variables and random processes American Mathematical Society,
Providence, RI, 2000.

E. Candes, J. Romberg, and T. Tao. Robust uncertainhciptes: exact
signal reconstruction from highly incomplete frequencyoimation.
IEEE Trans. Info. Theory52(2):489-509, February 2004.

E. Candes and T. Tao. Decoding by linear programmiti=E Trans.
Info Theory 51(12):4203-4215, December 2005.

E. Candes and T. Tao. The Dantzig selector: Statististination when
p is much larger tham. Annals of Statistics35(6):2313-2351, 2007.
S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decontjposby
basis pursuit.SIAM J. Sci. Computing20(1):33—-61, 1998.

(33]

[34]

[35]

signals in noise. IEEE Trans. Info Theory52(3):1030-1051, March
2006.

M. J. Wainwright. Sharp thresholds for high-dimengbrand noisy
recovery of sparsity using using;-constrained quadratic programs.
Technical Report 709, Department of Statistics, UC Begke2©06.

M. J. Wainwright. Information-theoretic bounds for aspity recov-
ery in the high-dimensional and noisy setting. Technicalpdie
725, Department of Statistics, UC Berkeley, January 2007ste®
as arxiv.math.ST/0702301; Presented at International pggiam on
Information Theory, June 2007.

M. J. Wainwright, P. Ravikumar, and J. Lafferty. Highwtensional graph
selection using/; -regularized logistic regression. MIPS Conference
December 2006.

[7] K.R. Davidson and S. J. Szarek. Local operator theondoan matrices,
and Banach spaces. Handbook of Banach Spageslume 1, pages
317-336. Elsevier, Amsterdan, NL, 2001.

[8] R. A.DeVore and G. G. LorentZonstructive ApproximatiorSpringer-
Verlag, New York, NY, 1993.

[9] D. Donoho. Compressed sensinBEE Trans. Info. Theorys2(4):1289—

1306, April 2006.

D. Donoho. For most large underdetermined systemsefii equations,

the minimal£;-norm solution is also the sparsest solutidommuni-

[36] W. Wang, M. J. Wainwright, and K. Ramchandran. Inforimiattheoretic

limits on sparse signal recovery: Dense versus sparse neeasut
matrices. Technical Report arXiv:0806.0604, UC Berkelryne 2008.
Presented at ISIT 2008, Toronto, Canada.

P. Zhao and B. Yu. On model selection consistency of daseurnal
of Machine Learning Researcli:2541-2567, 2006.

Biography: Martin Wainwright is currently an assistant
professor at University of California at Berkeley, with anpp
cations on Pure and Applied Mathemati&9(6):797-829, June 2006. appointment between the Department of Statistics and the
D. L. Donoho. For most large underdetermined systemdingfar fEl ical Engi . dc Sci
equations, the minimal; -norm near-solution approximates the sparse&)epanmem Y . ectrica ng'ne?”ng an s ompu_ter f:'e'nce
near-solution. Communications on Pure and Applied MathematicsHe received his Ph.D. degree in Electrical Engineering and
59(7):907-934, July 2006. Computer Science (EECS) from Massachusetts Institute of
D. L. Donoho, M. Elad, and V. M. Temlyakov. Stable recgvef sparse Technol MIT). Hi h int ts includ tatisti
overcomplete representations in the presence of ntigeE Trans. Info .eC nology ( ) )- |s-researc. In eresl S Include s ) :
Theory 52(1):6-18, January 2006. signal processing, coding and information theory, siatibt
D-I'-t- DO”Oh?] a”‘i'hl M. _Taft‘_”e“ C(?U”Itl'”gl faces %f_ ra”df_’g'mmided machine learning, and high-dimensional statistics. He has
olytopes wnen € projection radical owers dimensioh. Amer. . .
fﬂa¥h_%ocju|y 2008_p ) y been awarded an Alfred P. Sloan Foundation Fellowship,
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. ateangle an NSF CAREER Award. the George M. Sprowls Prize for
regression Annals of Statistics32(2):407-499, 2004. his dissertation research (EECS department, MIT), a Natura
Sciences and Engineering Research Council of Canada 1967
Fellowship, and several outstanding conference paperdswar

[37]

[20]

[11]

[12]

[13]

[14]
[15] M. Elad and A. M. Bruckstein. A generalized uncertairgyinciple

and sparse representation in pairs of bad&€E Trans. Info Theory
48(9):2558-2567, September 2002.

J. Fan and R. Li. Variable selection via non-concaveafieed likelihood

and its oracle propertiesJour. Amer. Stat. Ass96(456):1348-1360,
December 2001.

A. Feuer and A. Nemirovski. On sparse representatigpains of bases.
IEEE Trans. Info Theory49(6):1579-1581, 2003.

[16]

[17]



