
Mathematical techniques in data science

Lecture 4: Logistic Regression



Last lecture: Nearest Neighbors

General steps to build ML models

• Get and pre-process data

• Visualize the data (optional)

• Create a model

• Train the model; i.e. call model.fit()

• Predict on test data

• Compute evaluation metrics (accuracy, mean squared error,
etc.)

• Visualize the trained model (optional)



Underfiting/Overfitting



Underfiting/Overfitting

(Source: IBM)



Underfiting/Overfitting



Nearest neighbors: pros and cons

Pros:

• Simple algorithm

• Easy to implement, no training required

• Can learn complex target function

Cons:

• Prediction is slow

• Don’t work well with high-dimensional inputs (e.g., more than
20 features)



Logistic regression



Supervised learning

Learning a function that maps an input to an output based on
example input-output pairs



Supervised learning: Classification

Hand-written digit recognition (MNIST dataset)



Classification algorithms

• Logistic regression

• Linear Discriminant Analysis

• Support Vector Machines

• Nearest neighbours



Linear classification

Linear classification: The decision boundary is a line/hyperplane



Linear classification: Is it worth considering?

MNIST dataset: projected by PCA



Linear classification: Is it worth considering?

MNIST dataset: projected by t-SNE



Linear classification: Is it worth considering?

• Question: Linear classification: Is it worth considering?

• Answer: Yes, in combinations with proper transformation (via
manifold learning) or the kernel ’trick’.



Logistic regression

• Despite the name “regression”, is a classifier

• Only for binary classification
• Data point (x, y) where

• x = (x1, x2, . . . , xd) is a vector with d features
• y is the label (0 or 1)

• Logistic regression models P[y = 1|X = x]

• Then
P[y = 0|X = x] = 1− P[y = 1|X = x]



Logistic regression



Logistic regression



Logistic function and logit function

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p



Logistic regression



Logistic regression

• Model: Given X = x, Y is a Bernoulli random variable with
parameter p(x) = P[Y = 1|X = x] and

logit(p(x)) = β0 + β1x1 + . . .+ βdxd

for some vector β = (β0, β1, . . . , βd) ∈ Rd+1.

• Goal: Find β̂ that best ”fits” the data



To review

• Probability/Statistics
• Independence
• Bernoulli random variables
• Maximum-likelihood (ML) estimation

• Calculus
• Partial derivatives
• Finding critical points of a function



Parameter estimation

• Data: (x1, y1), (x2, y2), . . . , (xn, yn), we have

• For a Bernoulli r.v. with parameter p

P[Y = y ] = py (1− p)1−y , y ∈ {0, 1}

• Likelihood of the parameter (probability of the dataset):

L(β) =
n∏

i=1

p(xi , β)
yi (1− p(xi , β))

1−yi



Parameter estimation: maximum likelihood

• The log-likelihood can be computed as

ℓ(β) = log L(β)

=
n∑

i=1

[yi log p(xi , β) + (1− yi ) log(1− p(xi , β))]

• Maximize ℓ(β) to find β → the maximum-likelihood method

• The term
−[y log(p) + (1− y) log(1− p)]

is known in the field as the log-loss, or the binary
cross-entropy loss



Logistic regression: estimating the parameter

• The optimization needs to be performed by a numerical
optimization method

• Penalties can be added to regularize the problem to avoid
overfitting

max
β

ℓ(β)− 1

C

∑
i

|βi |

or

min
β

−ℓ(β)− 1

C

∑
i

|βi |2



Logistic regression with more than 2 classes

• Suppose now the response can take any of {1, . . . ,K} values

• We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x] = pk(x),
K∑

k=1

pk(x) = 1.

• Model

pk(x) =
ew

T
k xk+bk∑K

k=1 e
wT
k xk+bk



Logistic regression: pros and cons

Pros:

• Simple algorithm

• Prediction is fast

• Easy to implement

• The forward map has a closed-form formula of the derivatives

∂ℓ

∂βj
(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Cons:

• Linear model



How to make logistic regression better?

We want a model that

• compute the derivatives (of the objective function, with
respect to the parameters) easily

• can capture complex relationships

This is difficult because complex models often have high numbers
of parameters and don’t have closed-form derivatives, and
computations of

∂ℓ

∂βi
(x) ≈ ℓ(x + ϵi )− ℓ(x)

ϵi

are large (and unstable)



Next lecture

• Automatic differentiation and back-propagation
• Ideas:

• Organizing information using graphs (networks)
• Chain rule

(f ◦ g)′(x) = f ′(g(x))g ′(x)


