Mathematical techniques in data science

Lecture 4: Logistic Regression

Last lecture: Nearest Neighbors

General steps to build ML models

- Get and pre-process data
- Visualize the data (optional)
- Create a model
- Train the model; i.e. call model.fit()
- Predict on test data
- Compute evaluation metrics (accuracy, mean squared error, etc.)
- Visualize the trained model (optional)

Underfiting/Overfitting

KNN: K=1

Underfiting/Overfitting

High training error High test error

Low training error Low test error

Overfit
(high variance)

Low training error High test error
(Source: IBM)

Underfiting/Overfitting

Nearest neighbors: pros and cons

Pros:

- Simple algorithm
- Easy to implement, no training required
- Can learn complex target function

Cons:

- Prediction is slow
- Don't work well with high-dimensional inputs (e.g., more than 20 features)

Logistic regression

Supervised learning

Learning a function that maps an input to an output based on example input-output pairs

Supervised learning: Classification

Hand-written digit recognition (MNIST dataset)

Classification algorithms

- Logistic regression
- Linear Discriminant Analysis
- Support Vector Machines
- Nearest neighbours

Linear classification

Linear classification: The decision boundary is a line/hyperplane

Linear classification: Is it worth considering?

MNIST dataset: projected by PCA

Linear classification: Is it worth considering?

MNIST dataset: projected by t-SNE

Linear classification: Is it worth considering?

- Question: Linear classification: Is it worth considering?
- Answer: Yes, in combinations with proper transformation (via manifold learning) or the kernel 'trick'.

Logistic regression

- Despite the name "regression", is a classifier
- Only for binary classification
- Data point (\mathbf{x}, y) where
- $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is a vector with d features
- y is the label (0 or 1)
- Logistic regression models $P[y=1 \mid X=\mathbf{x}]$
- Then

$$
P[y=0 \mid X=\mathbf{x}]=1-P[y=1 \mid X=\mathbf{x}]
$$

Logistic regression

Logistic regression

Logistic function and logit function

Transformation between $(-\infty, \infty)$ and $[0,1]$

$$
\operatorname{logit}(p)=\log \frac{p}{1-p}
$$

Logistic regression

$\boldsymbol{x} \xrightarrow{\text { Linear transform }} \boldsymbol{w}^{T} \boldsymbol{x}+\boldsymbol{b} \xrightarrow{\begin{array}{c}\text { Convert to } \\ \text { probability }\end{array}} \frac{1}{1+\boldsymbol{e}^{-\boldsymbol{w}^{T} \boldsymbol{x}-\boldsymbol{b}}}$

Logistic regression

- Model: Given $X=\mathbf{x}, Y$ is a Bernoulli random variable with parameter $p(\mathbf{x})=P[Y=1 \mid X=\mathbf{x}]$ and

$$
\operatorname{logit}(p(\mathbf{x}))=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

for some vector $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{d}\right) \in \mathbb{R}^{d+1}$.

- Goal: Find $\hat{\beta}$ that best "fits" the data

To review

- Probability/Statistics
- Independence
- Bernoulli random variables
- Maximum-likelihood (ML) estimation
- Calculus
- Partial derivatives
- Finding critical points of a function

Parameter estimation

- Data: $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$, we have
- For a Bernoulli r.v. with parameter p

$$
P[Y=y]=p^{y}(1-p)^{1-y}, \quad y \in\{0,1\}
$$

- Likelihood of the parameter (probability of the dataset):

$$
L(\beta)=\prod_{i=1}^{n} p\left(\mathbf{x}_{i}, \beta\right)^{y_{i}}\left(1-p\left(\mathbf{x}_{i}, \beta\right)\right)^{1-y_{i}}
$$

Parameter estimation: maximum likelihood

- The log-likelihood can be computed as

$$
\begin{aligned}
\ell(\beta) & =\log L(\beta) \\
& =\sum_{i=1}^{n}\left[y_{i} \log p\left(\mathbf{x}_{i}, \beta\right)+\left(1-y_{i}\right) \log \left(1-p\left(\mathbf{x}_{i}, \beta\right)\right)\right]
\end{aligned}
$$

- Maximize $\ell(\beta)$ to find $\beta \rightarrow$ the maximum-likelihood method
- The term

$$
-[y \log (p)+(1-y) \log (1-p)]
$$

is known in the field as the log-loss, or the binary cross-entropy loss

Logistic regression: estimating the parameter

- The optimization needs to be performed by a numerical optimization method
- Penalties can be added to regularize the problem to avoid overfitting

$$
\max _{\beta} \ell(\beta)-\frac{1}{C} \sum_{i}\left|\beta_{i}\right|
$$

or

$$
\min _{\beta}-\ell(\beta)-\frac{1}{C} \sum_{i}\left|\beta_{i}\right|^{2}
$$

Logistic regression with more than 2 classes

- Suppose now the response can take any of $\{1, \ldots, K\}$ values
- We use the categorical distribution instead of the Bernoulli distribution

$$
P[Y=k \mid X=\mathbf{x}]=p_{k}(\mathbf{x}), \quad \sum_{k=1}^{K} p_{k}(\mathbf{x})=1
$$

- Model

$$
p_{k}(\mathbf{x})=\frac{e^{w_{k}^{T} \mathbf{x}_{k}+b_{k}}}{\sum_{k=1}^{K} e^{w_{k}^{T} \mathbf{x}_{k}+b_{k}}}
$$

Logistic regression: pros and cons

Pros:

- Simple algorithm
- Prediction is fast
- Easy to implement
- The forward map has a closed-form formula of the derivatives

$$
\frac{\partial \ell}{\partial \beta_{j}}(\beta)=\sum_{i=1}^{n}\left[y_{i} x_{i j}-x_{i j} \frac{e^{x_{i}^{\top} \beta}}{1+e^{x_{i}^{T} \beta}}\right] .
$$

Cons:

- Linear model

How to make logistic regression better?

We want a model that

- compute the derivatives (of the objective function, with respect to the parameters) easily
- can capture complex relationships

This is difficult because complex models often have high numbers of parameters and don't have closed-form derivatives, and computations of

$$
\frac{\partial \ell}{\partial \beta_{i}}(x) \approx \frac{\ell\left(x+\epsilon_{i}\right)-\ell(x)}{\epsilon_{i}}
$$

are large (and unstable)

Next lecture

- Automatic differentiation and back-propagation
- Ideas:
- Organizing information using graphs (networks)
- Chain rule

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

