
Mathematical techniques in data science

Lecture 5: Neural networks



Reminders

• Office hours (starting from the 2nd week):
• Tuesdays 5:00pm-6:00pm, via Zoom
• Wednesdays 3:30pm-4:30pm, Ewing Hall 312
• Thursday 2pm-3pm, Ewing Hall 107A
• By appointments

• Homework 1: due 03/03

• Sign up for group projects by the end of Week 4



Logistic regression

• Data point (x, y) where
• x = (x1, x2, . . . , xd) is a vector with d features
• y is the label (0 or 1)

• Logistic regression models P[y = 1|X = x]



Logistic regression



Logistic regression with more than 2 classes

• Suppose now the response can take any of {1, . . . ,K} values
• We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x] = pk(x),
K∑

k=1

pk(x) = 1.

• Model

pk(x) =
ew

T
k xk+bk∑K

k=1 e
wT
k xk+bk



Softmax function



Logistic regression: pros and cons

Pros:

• Simple algorithm

• Prediction is fast

• Easy to implement

• The forward map has a closed-form formula of the derivatives

∂ℓ

∂βj
(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Cons:

• Linear model



How to make logistic regression better?

We want a model that

• computes the derivatives (of the objective function, with
respect to the parameters) easily

• can capture complex relationships

This is difficult because complex models often have high numbers
of parameters and don’t have closed-form derivatives, and
computations of

∂ℓ

∂βi
(β, x) ≈ ℓ(β + ϵi , x)− ℓ(β, x)

ϵi

are costly (and unstable)



Ideas

• Automatic differentiation and back-propagation
• Ideas:

• Organizing information using graphs (networks)
• Chain rule

(f ◦ g)′(x) = f ′(g(x))g ′(x)



Neural networks



Logistic neuron



Why neuron?



Neural circuit



Feed-forward neural networks



Feed-forward neural networks



Feed-forward neural networks

• Structure:
• Graphical representation
• Activation functions

• Training:
• Loss functions
• Stochastic gradient descent
• Back-propagation



Activation functions



Activation functions

If we do not apply an activation function, then the output signal
would simply be a simple linear function of the input signals



Activation functions



Logistic function (sigmoid function)

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p



Hyperbolic tangent



Hyperbolic tangent

Issue: vanishing gradient problem



Hyperbolic tangent

Vanishing gradient problem



Rectified linear unit (ReLU)



Rectified linear unit (ReLU)

Advantage: model sparsity, cheap to compute (no complicated
math), partially address the vanishing gradient problem

Issue: Dying ReLU



Leaky relu



Exponential Linear Unit (ELU, SELU)



Softmax function



Feed-forward neural networks (multi-class classification)



Feed-forward neural networks

• Structure:
• Graphical representation
• Activation functions

• Training:
• Loss functions
• Stochastic gradient descent
• Back-propagation



Train feed-forward neural networks



Settings

• Data:
(x1, y1), (x2, y2), . . . , (xn, yn)

• Model parameters:

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training: Find the best
value of θ that fits the data



Maximum-likelihood method

• Average log-likelihood

L(θ) = 1

n

n∑
i=1

logP(y = yi |xi , θ)

• Model parameters:

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training: Maximize L(θ)



Cross-entropy loss (log loss)

• Cross-entropy loss = negative log-likelihood:

ℓ(θ) = −L(θ)

• Goal: Minimize ℓ(θ)



One-hot encoding

Convert a categorical value into a binary vector with exactly one
“1” element, and the rest are 0



Loss function for classification: cross-entropy

Note: Here yo,: is the one-hot encoding of the label and po,c is the
predicted probability for the observation o is of class c, respectively



Stochastic gradient descent



Gradient descent



Gradient descent



Stochastic gradient descent

• Recall that our objective function has the form

ℓ(θ) =
1

n

n∑
i=1

L(θ, xi , yi )

• Mini-batch stochastic gradient descent
• randomly shuffle examples in the training set, divide them into

k mini-batches of data of size m
• for each batch Ii (i=1, . . . , k), approximate the empirical risk

by

ℓ̂(θ) =
1

m

∑
j∈Ii

L(θ, xj , yj)

and update θ
θ ← θ − ρ∇ℓ̂(θ)

• Repeat until an approximate minimum is obtained or a
maximum numbers M epochs are done



Stochastic gradient descent: teminology

• Mini-batch stochastic gradient descent
• randomly shuffle examples in the training set, divide them into

k mini-batches of data of size m
• for each batch Ii (i=1, . . . , k), approximate the objective

function by

ℓ̂(θ) =
1

m

∑
j∈Ii

L(θ, xj , yj)

and update θ
θ ← θ − ρ∇ℓ̂(θ)

• Repeat until an approximate minimum is obtained or a
maximum numbers M epochs are done

• Terminology:
• m: batch-size
• ρ: learning rate
• M: number of epochs



Stochastic gradient descent (SGD)



Stochastic gradient descent

• Gradient descent converges to the local minimum, and the
fluctuation is small

• SGD’s fluctuation is large, but enables jumping to new/better
local minima



Escaping local minima



Automatic diffierentiation



Stochastic gradient descent

• The most computationally heavy part in the training of a
neural net is to compute

∂ℓ

∂θi ,j

• Numerical differentiation is not realistic, and symbolic
differentiation is impossible



Automatic differentiation

• Assume that
y = f (g(h(x)))

• Denote x = u0, h(u0) = u1, g(u1) = u2, f (u2) = u3 = y , then

dy

dui
=

dy

dui+1

dui+1

dui



Back-propagation



Back-propagation

Use chain rule to compute ∇ℓ(θ)

∂ℓ

∂b1
=

∂ℓ

∂p
(p) · ∂p

∂h2
(h2,W3, b3) ·

∂h2
∂h1

(h1,W2, b2) ·
∂h1
∂b1

(x ,W1, b1)



Back-propagation

• One forward pass to evaluate h1, h2, p, ℓ

• One backward pass to compute ∇ℓ(θ)



Feed-forward neural networks



Back-propagation

• Advantage: The cost to compute the partial derivatives with
respect to all parameters are just twice the cost of a forward
evaluations

• Drawback: The functions used to describe the network
(activation functions and loss functions) needs to belong to
the class of functions supported by the computational platform


