Mathematical techniques in data science

Lecture 5: Neural networks

(ロ)、(型)、(E)、(E)、 E) の(()

Reminders

- Office hours (starting from the 2nd week):
 - Tuesdays 5:00pm-6:00pm, via Zoom
 - Wednesdays 3:30pm-4:30pm, Ewing Hall 312
 - Thursday 2pm-3pm, Ewing Hall 107A
 - By appointments
- Homework 1: due 03/03
- Sign up for group projects by the end of Week 4

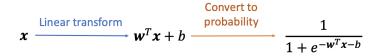
Logistic regression

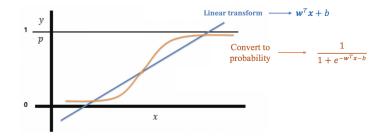
- Data point (**x**, y) where
 - $\mathbf{x} = (x_1, x_2, \dots, x_d)$ is a vector with d features

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- y is the label (0 or 1)
- Logistic regression models $P[y = 1 | X = \mathbf{x}]$

Logistic regression





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Logistic regression with more than 2 classes

- Suppose now the response can take any of $\{1, \ldots, K\}$ values
- We use the categorical distribution instead of the Bernoulli distribution

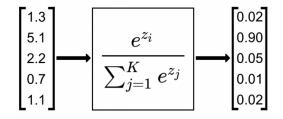
$$P[Y = k | X = \mathbf{x}] = p_k(\mathbf{x}), \quad \sum_{k=1}^{K} p_k(\mathbf{x}) = 1.$$

Model

$$p_k(\mathbf{x}) = \frac{e^{w_k^T \mathbf{x}_k + b_k}}{\sum_{k=1}^K e^{w_k^T \mathbf{x}_k + b_k}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Softmax function



Logistic regression: pros and cons

Pros:

- Simple algorithm
- Prediction is fast
- Easy to implement
- The forward map has a closed-form formula of the derivatives

$$rac{\partial \ell}{\partial eta_j}(eta) = \sum_{i=1}^n \Bigg[y_i x_{ij} - x_{ij} rac{e^{x_i^Teta}}{1 + e^{x_i^Teta}} \Bigg].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cons:

Linear model

How to make logistic regression better?

We want a model that

- computes the derivatives (of the objective function, with respect to the parameters) easily
- can capture complex relationships

This is difficult because complex models often have high numbers of parameters and don't have closed-form derivatives, and computations of

$$rac{\partial \ell}{\partial eta_i}(eta, x) pprox rac{\ell(eta + \epsilon_i, x) - \ell(eta, x)}{\epsilon_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

are costly (and unstable)

Ideas

- Automatic differentiation and back-propagation
- Ideas:
 - Organizing information using graphs (networks)
 - Chain rule

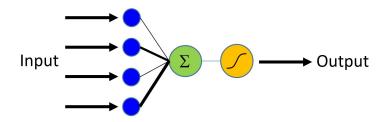
$$(f \circ g)'(x) = f'(g(x))g'(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Neural networks

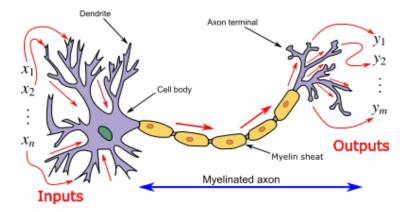
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Logistic neuron



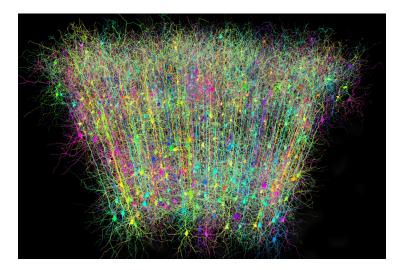
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

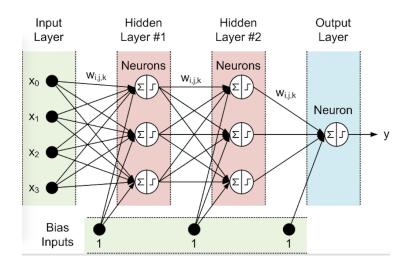
Why neuron?



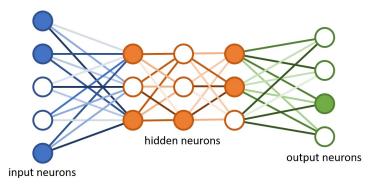
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Neural circuit





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

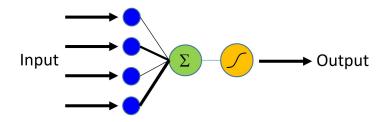
• Structure:

- Graphical representation
- Activation functions
- Training:
 - Loss functions
 - Stochastic gradient descent
 - Back-propagation

Activation functions

(ロ)、(型)、(E)、(E)、 E) の(()

Activation functions

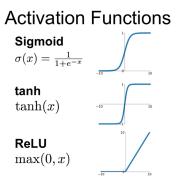


If we do not apply an activation function, then the output signal would simply be a simple linear function of the input signals

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Activation functions



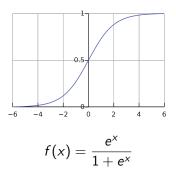
Leaky ReLU $\max(0.1x, x)$

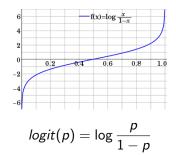
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Logistic function (sigmoid function)

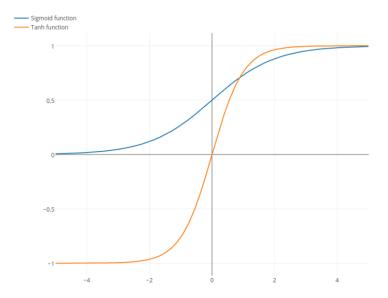
Transformation between $(-\infty,\infty)$ and [0,1]





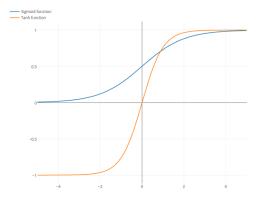
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Hyperbolic tangent



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

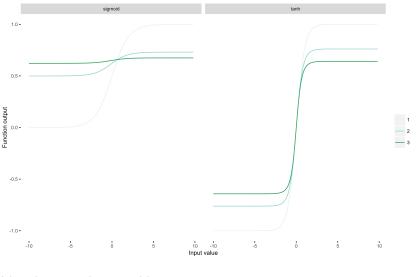
Hyperbolic tangent



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Issue: vanishing gradient problem

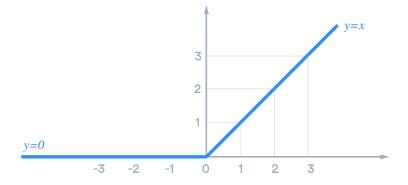
Hyperbolic tangent



・ロト・西ト・山田・山田・山口・

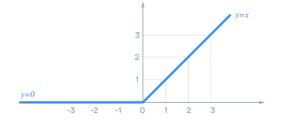
Vanishing gradient problem

Rectified linear unit (ReLU)



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

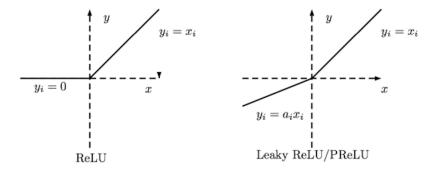
Rectified linear unit (ReLU)



Advantage: model sparsity, cheap to compute (no complicated math), partially address the vanishing gradient problem Issue: Dying ReLU

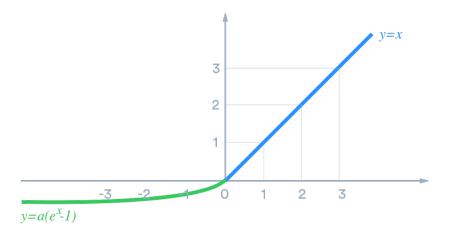
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Leaky relu



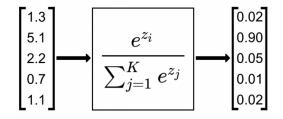
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Exponential Linear Unit (ELU, SELU)

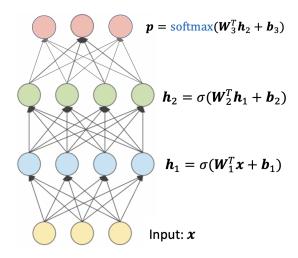


▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Softmax function



Feed-forward neural networks (multi-class classification)



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Structure:

- Graphical representation
- Activation functions
- Training:
 - Loss functions
 - Stochastic gradient descent
 - Back-propagation

Train feed-forward neural networks

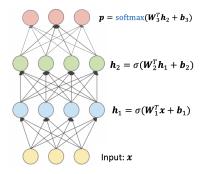
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Settings

- Data:
 (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Model parameters:

$$\theta = (W_1, b_1, W_2, b_2, \dots, W_L, b_L)$$

 Training: Find the best value of θ that fits the data



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Maximum-likelihood method

Average log-likelihood

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log P(y = y_i | \mathbf{x}_i, \theta)$$

• Model parameters:

$$\theta = (W_1, b_1, W_2, b_2, \ldots, W_L, b_L)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Training: Maximize $\mathcal{L}(\theta)$

Cross-entropy loss (log loss)

• Cross-entropy loss = negative log-likelihood:

$$\ell(heta) = -\mathcal{L}(heta)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Goal: Minimize $\ell(\theta)$

One-hot encoding



Convert a categorical value into a binary vector with exactly one "1" element, and the rest are ${\bf 0}$

Loss function for classification: cross-entropy

Code

def CrossEntropy(yHat, y): if y == 1: return -log(yHat) else: return -log(1 - yHat)

Math

In binary classification, where the number of classes M equals 2, cross-entropy can be calculated as:

 $-(y \log(p) + (1 - y) \log(1 - p))$

If M > 2 (i.e. multiclass classification), we calculate a separate loss for each class label per observation and sum the result.

$$-\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

Note: Here $y_{o,:}$ is the one-hot encoding of the label and $p_{o,c}$ is the predicted probability for the observation o is of class c, respectively

Gradient descent

Gradient Descent

Minimize a function by moving in the opposite direction of the gradient.

$$\theta_i := \theta_i - \rho \frac{\partial J}{\partial \theta_i}$$

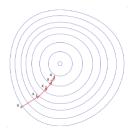
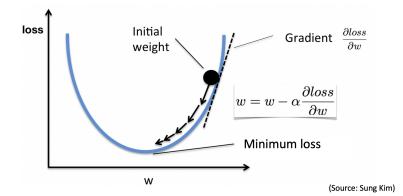


Figure: Gradient Descent. Source: http://en.wikipedia.org/wiki/Gradient_descent

Gradient descent



· Recall that our objective function has the form

$$\ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(\theta, x_i, y_i)$$

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
 - for each batch *l_i* (i=1, ..., k), approximate the empirical risk by

$$\hat{\ell}(\theta) = \frac{1}{m} \sum_{j \in I_i} L(\theta, x_j, y_j)$$

and update θ

$$\theta \leftarrow \theta - \rho \nabla \hat{\ell}(\theta)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Repeat until an approximate minimum is obtained or a maximum numbers *M* epochs are done

Stochastic gradient descent: teminology

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into *k* mini-batches of data of size *m*
 - for each batch I_i (i=1, ..., k), approximate the objective function by

$$\hat{\ell}(\theta) = \frac{1}{m} \sum_{j \in I_i} L(\theta, x_j, y_j)$$

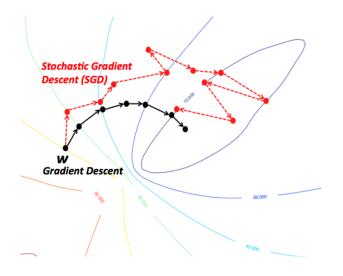
and update θ

$$\theta \leftarrow \theta - \rho \nabla \hat{\ell}(\theta)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Repeat until an approximate minimum is obtained or a maximum numbers *M* epochs are done
- Terminology:
 - m: batch-size
 - ρ: learning rate
 - M: number of epochs

Stochastic gradient descent (SGD)

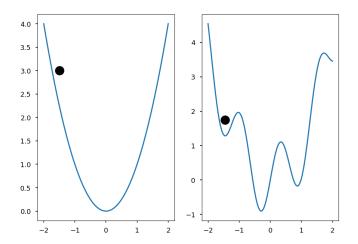


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Gradient descent converges to the local minimum, and the fluctuation is small
- SGD's fluctuation is large, but enables jumping to new/better local minima

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Escaping local minima



E 990

メロト メロト メヨト メヨト

Automatic diffierentiation

(ロ)、(型)、(E)、(E)、 E) の(()

 The most computationally heavy part in the training of a neural net is to compute

$$\frac{\partial \ell}{\partial \theta_{i,j}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Numerical differentiation is not realistic, and symbolic differentiation is impossible

Automatic differentiation

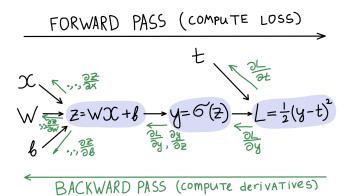
Assume that

y = f(g(h(x)))

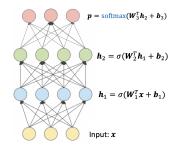
• Denote $x = u_0$, $h(u_0) = u_1$, $g(u_1) = u_2$, $f(u_2) = u_3 = y$, then

$$\frac{dy}{du_i} = \frac{dy}{du_{i+1}} \frac{du_{i+1}}{du_i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

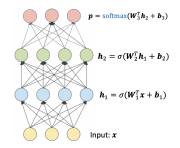


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙



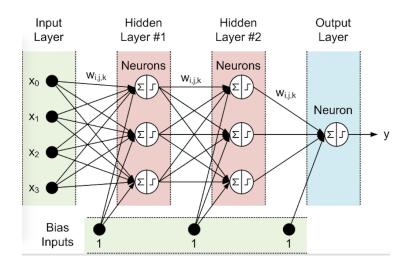
Use chain rule to compute $\nabla \ell(\theta)$

$$\frac{\partial \ell}{\partial b_1} = \frac{\partial \ell}{\partial p}(p) \cdot \frac{\partial p}{\partial h_2}(h_2, W_3, b_3) \cdot \frac{\partial h_2}{\partial h_1}(h_1, W_2, b_2) \cdot \frac{\partial h_1}{\partial b_1}(x, W_1, b_1)$$



- One forward pass to evaluate h_1, h_2, p, ℓ
- One backward pass to compute $\nabla \ell(\theta)$

Feed-forward neural networks



- Advantage: The cost to compute the partial derivatives with respect to all parameters are just twice the cost of a forward evaluations
- Drawback: The functions used to describe the network (activation functions and loss functions) needs to belong to the class of functions supported by the computational platform

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●