Mathematical techniques in data science

Lecture 8: Hypothesis space and loss function



Where are we?

® Algorithms

® |ntros to classification
Overfitting and underfitting
Nearest neighbors
Logistic regression
Feed-forward neural networks
Convolutional neural networks
e Codings
® Numpy, matplotlib, sklearn
® Reading sklearn documentations
® Pre-process inputs (i.e., numpy.shape())
® Data simulations (by hand or using built-in functions in
sklearn)
Data splitting
Train models; making prediction; evaluate models



What's next?

® Mathematical techniques in data sciences

® A short introduction to statistical learning theory
Linear regression — regularization and feature selection
SVM — the kernel trick

Random forests — boosting and bootstrapping

® Algorithms and learning contexts
® PCA and Manifold learning
® (Clustering
® Selected topics



A short introduction to statistical learning theory
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Diagram of a typical supervised learning problem
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Supervised learning: learning a function that maps an input to an
output based on example input-output pairs



Supervised learning: standard setting

® Given: a sequence of label data (x1,y1), (x2,¥2),- -, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

® Goal: predict the label of new samples (as accurately as
possible)



Example

e MNIST dataset
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® Each image as a vector in x € R"®* and the label as a scalar

.9}

y €{0,1,..
® Goal: learn to identify/predict digits (as accurately as

possible)



Supervised learning: standard setting

e Given: a sequence of label data (x1,y1), (x2,¥2),- -, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

® Goal: predict the label of new samples (as accurately as
possible)

® Question:

® How to make predictions?
® What do you mean by “as accurately as possible?”



Hypothesis space

Given: a sequence of label data (x1,y1), (x2,¥2), -, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

Goal: a learning algorithm seeks a function h: X — ), where
X is the input space and ) is the output space

The function h is an element of some space of possible
functions H, usually called the hypothesis space

Usually, this hypothesis space can be indexed by some

parameters (often specified by a model or a learning
algorithm)



Hypothesis space: logistic regression

Two classes: 0 and 1
x € R4
Probability model

B 1
Pwb(X) = T s
Prediction rule hy, p(x)
® If pw p(x) > 0.5, predict hy, p(x) =1
® If pw.s(x) < 0.5, predict h, p(x) =0

Hypothesis space

/H:{hWJ)ZWERd,bER}



Loss function

® The function h is an element of some space of possible
functions H, usually called the hypothesis space

® |n order to measure how well a function fits the data, a loss
function

L:YxY— RO
is defined



Loss function: examples

® |n order to measure how well a function fits the data, a loss
function
L:YxY—RDO
is defined

® For regression:

L(h(x),y) = [h(x) = yI*

® For classification: the 0-1 loss and the binary-cross-entropy
loss
0, if h(x)=y

1 otherwise

L(h(x),y) = {

L(p(x),y) = —y log(p(x)) — (1 —y) log(1 — p(x))



Loss function

The function h is an element of some space of possible
functions H, usually called the hypothesis space

In order to measure how well a function fits the data, a loss
function

L:YxY— R0
is defined

It is straightforward that we want to have a hypothesis with
minimal loss

Question: minimal loss on which dataset?



estimation

error

Underfiting/Overfitting
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Risk function

® Assumption: The future samples will be obtained from the
same distribution Px y of the training data

® With a pre-defined loss function, the risk function is defined as

R(h) = Ex,y)~p[L(h(X), Y)]

® The “optimal hypothesis”, denoted by h* in this lecture, is the
minimizer over H of the risk function

h* = arg ’rg?r_]l R(h)



Review: Probability
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Discrete random variable
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® Probability of an event A:

=> P(x)

x€EA

Example: P({X is even}) = P(2) + P(4) + P(6) = 1/2
® Sometimes we write P(X = x) for P(x), for example,
P(X =2)=P(2).



Continuous random variable

e Sample space is continuous (real values)
® Characterized by a density function P:

® P(x)>0forall xeR
° ffooo P(x) dx =1
® For any fixed constant a, b,

P(aSXﬁb)—/bP(x) dx

a b

Figure 4.2 Pla = X = b) = the area under the density curve between a and b



Expectation of random variables

® Expectation (expected value or mean) of a discrete random
variable X:

EIX] =) xP(x) =Y xiP(x)
X i=1
® For continuous variables:
ﬂﬂ:/www
® Can be used for functions:
Elg(X)] =) _g(x)P(x)

or

Elg(X)] = / g(x)P(x)dx



THEOREM

Law of large numbers

If X). X,, . .., X, is a random sample from a distribution with mean y and vari-
ance o, then X converges to u

a. Inmean square  E[(X — p)?]—>0asn— o0

4

In probability P(X —p|=e)—>0asn—oo
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EmpiriCaI risk
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Empirical risk

® Since P is unknown, the simplest approach is to approximate
the risk function by the empirical risk

1 n
Rn(h) = Z L(h(xi), yi)
i=1
® Rationale: The law of large number — If the random variables
21,2, ...,Z, are drawn independently from the same

distribution Pz, then

L+ 2o+ ... 2,
1+ 4o+ ~ E[Z]

n



ERM

Empirical risk minimizer (ERM): minimizer of the empirical
risk function )
1
Rn(h) = Z L(h(Xi)ayi)

n <
i=1

The risk function is defined as

R(h) = Eix,v)~p[L(h(X), Y)]

Rationale: R,(h) ~ R(h)
In this lecture, we use the notation /A1,, to denote the ERM
We hope that

R(h,) ~ R(h*)

Note: h, is random, while h* is a fixed hypothesis



Failure of ERM

We hope that
R(hn) = R(h"),

but in general, this might not be true if the hypothesis space H is
too large




Failure of ERM

® \We hope that
R(hn) = R(h),
but in general, this might not be true if the hypothesis space
H is too large
® Question: What does "too large” mean?

® We need to be able to quantify/control the difference between
R(hn) and R(h*)



Modes of estimations

® Analysis

lim x, = x
n—oo

® Numerical analysis
1 C
o =xll =0 () or Il <

® PAC (Probably Approximately Correct) learning

1% = x|| < €(3)

Si-

with probability at least 1 —



PAC learning

Definition
The probably approximately correct (PAC) learning model typically
states as follows: we say that h,, is e-accurate with probability
1—90if

P |R(h,) — R(h*) > €| <.

In other words, we have R(h,) — R(h*) < € with probability at
least (1 — 9).



Probability inequalities
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Markov inequality

Theorem (Markov inequality)

For any nonnegative random variable X and € > 0,

P[X > ¢ < E[GX]



Markov inequality

Theorem
For any random variable X, ¢ > 0 and t > 0
tX]

PIX > < [e



Exponential moment of bounded random variables

Theorem
If random variable X has mean zero and is bounded in [a, b], then

for any s > 0,
t2(b — a)?



Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let X1, X2, ..., X, be i.i.d copy of a random variable X € |a, b],
and € > 0,

Xi+Xo+ ...+ X, ne?
P — E[X] > < —_ .
[ " 22| <o0 (35 )

Corollary:

X1+ Xo+ ...+ X, ne2
P — E[X]| > <2 - .
H n [ We} “p< %b—aﬁ>




