Mathematical techniques in data science

Lecture 8: Hypothesis space and loss function

Where are we?

Algorithms

- Intros to classification
- Overfitting and underfitting
- Nearest neighbors
- Logistic regression
- Feed-forward neural networks
- Convolutional neural networks

Codings

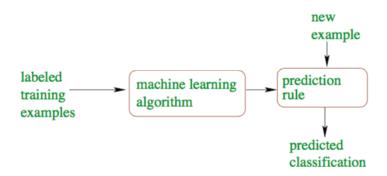
- Numpy, matplotlib, sklearn
- Reading sklearn documentations
- Pre-process inputs (i.e., numpy.shape())
- Data simulations (by hand or using built-in functions in sklearn)
- Data splitting
- Train models; making prediction; evaluate models

What's next?

- Mathematical techniques in data sciences
 - A short introduction to statistical learning theory
 - Linear regression regularization and feature selection
 - SVM the kernel trick
 - Random forests boosting and bootstrapping
- Algorithms and learning contexts
 - PCA and Manifold learning
 - Clustering
 - Selected topics

A short introduction to statistical learning theory

Diagram of a typical supervised learning problem



Supervised learning: learning a function that maps an input to an output based on example input-output pairs

Supervised learning: standard setting

- Given: a sequence of label data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ sampled (independently and identically) from an unknown distribution $P_{X,Y}$
- Goal: predict the label of new samples (as accurately as possible)

Example

MNIST dataset

- Each image as a vector in $x \in \mathbb{R}^{784}$ and the label as a scalar $y \in \{0,1,\ldots,9\}$
- Goal: learn to identify/predict digits (as accurately as possible)

Supervised learning: standard setting

- Given: a sequence of label data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ sampled (independently and identically) from an unknown distribution $P_{X,Y}$
- Goal: predict the label of new samples (as accurately as possible)
- Question:
 - How to make predictions?
 - What do you mean by "as accurately as possible?"

Hypothesis space

- Given: a sequence of label data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ sampled (independently and identically) from an unknown distribution $P_{X,Y}$
- Goal: a learning algorithm seeks a function $h: \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space
- The function h is an element of some space of possible functions H, usually called the hypothesis space
- Usually, this hypothesis space can be indexed by some parameters (often specified by a model or a learning algorithm)

Hypothesis space: logistic regression

- Two classes: 0 and 1
- $x \in \mathbb{R}^d$
- Probability model

$$p_{w,b}(x) = \frac{1}{1 + e^{-w^T x - b}}$$

- Prediction rule $h_{w,b}(x)$
 - If $p_{w,b}(x) > 0.5$, predict $h_{w,b}(x) = 1$
 - If $p_{w,b}(x) \le 0.5$, predict $h_{w,b}(x) = 0$
- Hypothesis space

$$\mathcal{H} = \{h_{w,b} : w \in \mathbb{R}^d, b \in \mathbb{R}\}\$$

Loss function

- The function h is an element of some space of possible functions H, usually called the hypothesis space
- In order to measure how well a function fits the data, a loss function

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

Loss function: examples

 In order to measure how well a function fits the data, a loss function

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

• For regression:

$$L(h(x), y) = [h(x) - y]^2$$

 For classification: the 0-1 loss and the binary-cross-entropy loss

$$L(h(x), y) = \begin{cases} 0, & \text{if } h(x) = y \\ 1 & \text{otherwise} \end{cases}$$
$$L(p(x), y) = -y \log(p(x)) - (1 - y) \log(1 - p(x))$$

Loss function

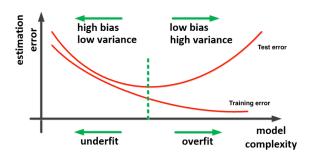
- The function h is an element of some space of possible functions H, usually called the hypothesis space
- In order to measure how well a function fits the data, a loss function

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^{\geq 0}$$

is defined

- It is straightforward that we want to have a hypothesis with minimal loss
- Question: minimal loss on which dataset?

Underfiting/Overfitting



Risk function

- Assumption: The future samples will be obtained from the same distribution $P_{X,Y}$ of the training data
- With a pre-defined loss function, the risk function is defined as

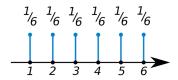
$$R(h) = E_{(X,Y)\sim P}[L(h(X),Y)]$$

• The "optimal hypothesis", denoted by h^* in this lecture, is the minimizer over \mathcal{H} of the risk function

$$h^* = \arg\min_{h \in \mathcal{H}} R(h)$$

Review: Probability

Discrete random variable



Probability of an event A:

$$P(A) = \sum_{x \in A} P(x)$$

Example: $P({X \text{ is even}}) = P(2) + P(4) + P(6) = 1/2$

• Sometimes we write P(X = x) for P(x), for example, P(X = 2) = P(2).

Continuous random variable

- Sample space is continuous (real values)
- Characterized by a density function *P*:
 - $P(x) \ge 0$ for all $x \in \mathbb{R}$
 - $\int_{-\infty}^{\infty} P(x) dx = 1$
 - For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b P(x) \ dx$$

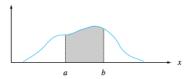


Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between a and b

Expectation of random variables

 Expectation (expected value or mean) of a discrete random variable X:

$$E[X] = \sum_{x} xP(x) = \sum_{i=1}^{n} x_i P(x_i)$$

For continuous variables:

$$E[X] = \int_{x} x P(x) dx$$

Can be used for functions:

$$E[g(X)] = \sum_{x} g(x)P(x)$$

or

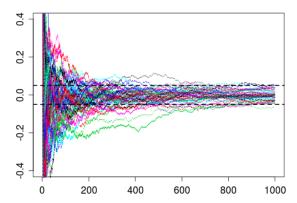
$$E[g(X)] = \int_{X} g(x)P(x)dx$$

Law of large numbers

THEOREM

If X_1, X_2, \ldots, X_n is a random sample from a distribution with mean μ and variance σ^2 , then \overline{X} converges to μ

- **a.** In mean square $E[(\overline{X} \mu)^2] \to 0$ as $n \to \infty$
- **b.** In probability $P(|\overline{X} \mu| \ge \varepsilon) \to 0 \text{ as } n \to \infty$



Empirical risk

Empirical risk

 Since P is unknown, the simplest approach is to approximate the risk function by the empirical risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x_i), y_i)$$

• Rationale: The law of large number – If the random variables Z_1, Z_2, \ldots, Z_n are drawn independently from the same distribution P_Z , then

$$\frac{Z_1 + Z_2 + \dots Z_n}{n} \approx E[Z]$$

ERM

 Empirical risk minimizer (ERM): minimizer of the empirical risk function

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x_i), y_i)$$

The risk function is defined as

$$R(h) = E_{(X,Y)\sim P}[L(h(X),Y)]$$

- Rationale: $R_n(h) \approx R(h)$
- In this lecture, we use the notation \hat{h}_n to denote the ERM
- We hope that

$$R(\hat{h}_n) \approx R(h^*)$$

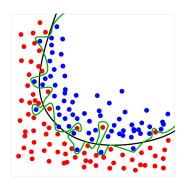
• Note: \hat{h}_n is random, while h^* is a fixed hypothesis

Failure of ERM

We hope that

$$R(\hat{h}_n) \approx R(h^*),$$

but in general, this might not be true if the hypothesis space $\ensuremath{\mathcal{H}}$ is too large



Failure of ERM

We hope that

$$R(\hat{h}_n) \approx R(h^*),$$

but in general, this might not be true if the hypothesis space $\ensuremath{\mathcal{H}}$ is too large

- Question: What does "too large" mean?
- We need to be able to quantify/control the difference between $R(\hat{h}_n)$ and $R(h^*)$

Modes of estimations

Analysis

$$\lim_{n\to\infty} x_n = x$$

Numerical analysis

$$||x_n - x|| = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$$
 or $||x_n - x|| \le \frac{C}{\sqrt{n}}$

• PAC (Probably Approximately Correct) learning

$$||x_n-x|| \leq C(\delta)\frac{1}{\sqrt{n}}$$

with probability at least $1-\delta$

PAC learning

Definition

The probably approximately correct (PAC) learning model typically states as follows: we say that \hat{h}_n is ϵ -accurate with probability $1-\delta$ if

$$P\left[R(\hat{h}_n)-R(h^*)>\epsilon\right]<\delta.$$

In other words, we have $R(\hat{h}_n) - R(h^*) \le \epsilon$ with probability at least $(1 - \delta)$.

Probability inequalities

Markov inequality

Theorem (Markov inequality)

For any nonnegative random variable X and $\epsilon > 0$,

$$P[X \ge \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon}.$$

Markov inequality

Theorem

For any random variable X, $\epsilon > 0$ and t > 0

$$P[X \ge \epsilon] \le \frac{\mathbb{E}[e^{tX}]}{e^{t\epsilon}}.$$

Exponential moment of bounded random variables

Theorem

If random variable X has mean zero and is bounded in [a,b], then for any s>0,

$$\mathbb{E}[e^{tX}] \le \exp\left(\frac{t^2(b-a)^2}{8}\right)$$

Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let $X_1, X_2, ..., X_n$ be i.i.d copy of a random variable $X \in [a, b]$, and $\epsilon > 0$,

$$P\left[\frac{X_1+X_2+\ldots+X_n}{n}-E[X]\geq\epsilon\right]\leq\exp\left(-\frac{n\epsilon^2}{2(b-a)^2}\right).$$

Corollary:

$$P\left[\left|\frac{X_1+X_2+\ldots+X_n}{n}-E[X]\right|\geq\epsilon\right]\leq 2\exp\left(-\frac{n\epsilon^2}{2(b-a)^2}\right).$$