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Supervised learning: standard setting

e Given: a sequence of label data (x1,y1), (x2,¥2), .-+, (Xn, ¥n)
sampled (independently and identically) from an unknown
distribution Px y

@ a learning algorithm seeks a function h: X — ), where X is
the input space and ) is the output space
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Supervised learning: standard setting

@ The function h is an element of some space of possible
functions H, usually called the hypothesis space

@ In order to measure how well a function fits the training data,
a loss function

L:YxY — RO
is defined
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Risk and empirical risk

@ With a pre-defined loss function, the “optimal hypothesis” is
the minimizer over H of the risk function

R(h) = Ex,y)~p[L(Y, h(X))]

@ Since P is unknown, the simplest approach is to approximate
the risk function by the empirical risk

Ra(h) = 3" L(yi, h(x)
i=1

@ The empirical risk minimizer (ERM): minimizer of the
empirical risk function (in this lecture, denoted by hj)

@ Let h* denotes a minimizer of the risk function

Mathematical techniques in data science



PAC learning

Definition

The probably approximately correct (PAC) learning model typically
states as follows: we say that h, is e-accurate with probability
1—90if

P[R(ha) = R(H) > €] <.

In other words, we have R(h,) — R(h*) < e with probability at
least (1 — 9).
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Exponential moment of bounded random variables

For any random variable X, e > 0 and t > 0

P[X > ¢] < [tX]

If random variable X has mean zero and is bounded in [a, b, then

for any s > 0,
2(p _ o)2
E[eX] < exp <t(ba)>

8
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Hoeffding's inequality

Theorem (Hoeffding's inequality)

Let X1, Xz, ..., X, be i.i.d copy of a random variable X € |[a, b],

and € > 0,
X1+ Xo + ...+ X, ne?
— E[X] > < —_ .
4 " X2 <o (55 0)
Corollary:
X1+ Xo+ ...+ X, ne?
— >e|l <2 —_ ).
al : 0|2 o] <200 (555
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Generalization bound for finite hypothesis space and bounded

loss
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@ the loss function L is bounded, that is
0<L(y,y)<c Vy,y el
@ the hypothesis space is a finite set, that is

H - {hl,hz,...,hm}.
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@ For any h € H and € > 0 we have

n62
P[|Rn(h) — R(h)| > €] < 2exp <—2C2> .

@ Using a union bound on the “failure probability” associated
with each hypothesis, we have

2
P[3h € H : |Ra(h) — R(h)| = €] < 2[H]|exp <_QZ2> ‘
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@ Using a union bound on the “failure probability” associated
with each hypothesis, we have

PIVh € H : [Ro(h) — R(h)| < €

2
>1—2|H|exp (—Q;) :

@ Under this “good event”:

(ha) = R(h")
= [R(hn) = Ra(hn)] + [Ra(hn) — Ra(h*)] + [Ra(h*) — R(h*)]
< 2¢

e Conclusion: h, is (2¢)-accurate with probability 1 — 8, where

ne?
0 = 2|H|exp <_2c2>
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PAC estimate for ERM

Forany 6 >0 and e > 0, if
8c? 2|H|
n> = log (5 )

then hy, is e-accurate with probability at least 1 — 6.

A
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PAC estimate for ERM
8c 8 2|’H|>
(5

@ Fix a level of confidence 4, the accuracy € of the ERM is

0 (%\/mg (3)+ Iog(\”H!))

o If we want € — 0 as n — oo:

log(|H]) < n

@ The convergence rate will not be better than O(n~1/?)
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Generalization bound using covering number.
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Covering numbers

@ Assumption: H is a metric
space with distance d
defined on it.

@ For € > 0, we denote by
N (e, H, d) the covering
number of (H,d); that is,
N (e, H,d) is the minimal
number of balls of radius €
needed to cover H.
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Covering numbers

Remark: If H is a bounded
k—dimensional manifold/algebraic
surface, then we now that

N(e,H,d) =0 (e*k)
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Generalization bound using covering number.

@ Assumption: H is a metric space with distance d defined on it.

@ For e > 0, we denote by NV (e, H, d) the covering number of
(H,d); that is, N'(¢,H, d) is the minimal number of balls of
radius € needed to cover H.

@ Assumption: loss function L satisfies:

L(h(x), y)=L(H (x),y)| < Cd(h,H) V,x € X;y € Vih,H € H
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o If

then the event
|Rn(h) — R(h)| <€,Vh e H,

happens with probability at least 1 — 4.

@ Under this event, consider any h € H, then there exists
ho € H. such that d(h, hy) < e.
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@ Since the loss function is Lipschitz
[Rn(h) = Ra(ho)| < Cd(h, ho)

and
|R(h) — R(ho)| < Cd(h, ho).

@ Conclusion:

IRa(h) — R(h)| < (2C +1)e VheH.
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Generalization bound using covering number.

For alle >0, 6 >0, if

c? 2N (e, H, d)
n=saloe <5>

then
|Rn(h) — R(h)| < (2C +1)e VYheH.

with probability at least 1 — .

.
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Example: Polynomial covering number.

@ Assume that
N(e,H,d) < Kek

for some K >0 and k > 1.

~

@ h, is e-accurate with probability at least 1 — ¢ if

c2(4C +2)? 2K 4C+2
n=————"|log|— )+ klog
2¢2 5 €

@ Homework: Fix n and ¢, derive an upper bound for e.
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REMEIS
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If we want e — 0 as n — oo

dimension(H) < n

How do we get that?
@ Model selection

@ Feature selection
@ Regularization:

o Work for the case dimension(H) > n

o Stabilize an estimator — force it to live in a neighborhood of a
lower-dimensional surface

e Requires a stability bound instead of a uniform generalization
bound
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