
Mathematical techniques in data science

Lecture 11: Linear regression



Mathematical techniques in data sciences

• A short introduction to statistical learning theory

• SVM – the kernel trick

• Linear regression – regularization and feature selection

• Random forests — boosting and bootstrapping



Supervised learning: standard setting

• Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn)
sampled (independently and identically) from an unknown
distribution PX ,Y

• Goal: predict the label of a new instance x

• In a regression problem, the outputs are not categorical



Linear regression

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• p: number of variables (X ∈ Rp)

• n: number of observations



Classical setting

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)

• n ≫ p (n much larger than p). With enough observations, we
hope to be able to build a good model

• even if the true relationship between the variables is not
linear, we can include transformations of variables

X (p+1) = [X (1)]2, X (p+2) = X (1)X (3), . . .

• adding transformed variables can increase p significantly



Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• Higher values of p lead to more complex model → increases
prediction power/accuracy

• Higher values of p make it more difficult to interpret the
model: It is often the case that some or many of the variables
regression model are in fact not associated with the response



Moderns settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• it is often the case that n ≪ p

• requires supplementary assumptions (e.g. sparsity)

• can still build good models with very few observations.



Linear regression by least squares



Settings

• Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |


where x (1), x (2), . . . , x (p) ∈ Rn×1 are the observations of
X (1),X (2), . . . ,X (p).

• We want

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)



Settings

• We want

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)

• Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)





Least squares

Y = Xβ

• In general, the system has no solution (n ≫ p ) or infinitely
many solutions (n ≪ p)

• The most popular estimation method is least squares, in
which we pick the coefficients to minimize the residual sum of
squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2



Least squares



Least squares

• Minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2

• Or alternatively,
β̂ = min

β
∥Y − Xβ∥22



Least squares

• Minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2

=
n∑

i=1

(
yi − β(0) − β(1)x

(1)
i − β(2)x

(2)
i − . . .− β(p)x

(p)
i

)2

• Taking derivative

∂RSS

∂β(j)
=

n∑
i=1

2(yi − xiβ)x
(j)
i = 2[x (j)]T (Y − Xβ)



Least squares

• Set derivatives to zero

XT (Y − Xβ) = 0

• If XTX is invertible

β̂ = (XTX )−1XTY

• Predicted values

Ŷ = Xtest β̂ = Xtest(X
T
trainXtrain)

−1XT
trainYtrain



The coefficient of determination

• The coefficient of determination, called “R squared” and
denoted by

R2 = 1−
∑n

i=1 (yi − ŷi )
2∑n

i=1 (yi − ȳ)2

where ȳ is the average of y1, . . . , yn
• Often used to measure the quality of a linear model

• A model with a R2 close to 1 fit the data well.



The coefficient of determination

In some sense, the R2 measures how much better is the prediction
compared to a constant prediction



The adjusted coefficient of multiple determination

• It is desirable to adjust R2 to take account of the fact that its
value may be quite high just because many predictors were
used relative to the amount of data

• The adjusted coefficient of multiple determination

R2
a = 1−

1
n−p−1

∑n
i=1 (yi − ŷi )

2

1
n−1

∑n
i=1 (yi − ȳ)2

where ȳ is the average of y1, . . . , yn



sklearn.linear model.LinearRegression



sklearn.preprocessing.PolynomialFeatures



Questions

• Is at least one of the predictors X1,X2, . . . ,Xp useful in
predicting the response?

• Do all the predictors help to explain Y , or is only a subset of
the predictors useful?



Subset selection



Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• Higher values of p lead to more complex model → increases
prediction power/accuracy

• Higher values of p make it more difficult to interpret the
model

• Ideally, we would like to try out a lot of different models, each
containing a different subset of the predictors, then select the
best model

• Problem: there are 2p models that contain subsets of p
variables



Best subset selection



Forward stepwise selection



Backward stepwise selection



Hybrid approach

• Hybrid versions of forward and backward stepwise selection
are available

• variables are added to the model sequentially

• after adding each new variable, the method may also remove
any variables that no longer provide an improvement in the
model fit



Adjusted training errors

• Adjusted R2

• Mallow’s Cp

Cp =
1

n
(RSS + 2d σ̂2)

where σ̂2 is an estimate of the variance of the error, d is the
number of predictors

• AIC (Akaike information criterion)

AIC =
1

nσ̂2
(RSS + 2d σ̂2)

• BIC (Bayesian information criterion)

BIC =
1

nσ̂2
(RSS + log(n)σ̂2)



sklearn does not support subset selection



Shrinkage methods



Settings

Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |





Linear model: settings

• Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)


• Least squares regression

β̂LS = min
β

∥Y− Xβ∥22



ℓ0 regularization

• ℓ0 regularization

β̂0 = min
β

∥Y− Xβ∥22 + λ

p∑
i=1

1β(i) ̸=0

where λ > 0 is a parameter

• pay a fixed price λ for including a given variable into the model

• variables that do not significantly contribute to reducing the
error are excluded from the model (i.e., βi = 0)

• problem: difficult to solve (combinatorial optimization).
Cannot be solved efficiently for a large number of variables.



ℓ2 (Tikhonov) regularization

• Ridge regression/ Tikhonov regularization

β̂RIDGE = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]2

where λ > 0 is a parameter

• shrinks the coefficients by imposing a penalty on their size

• penalty is a smooth function.

• easy to solve (solution can be written in closed form)

• can be used to regularize a rank deficient problem (n < p)



ℓ2 (Tikhonov) regularization

∂
(
∥Y− Xβ∥22 + λ∥β∥2

)
∂β

= 2XT (Y− Xβ) + 2λβ

• The critical point satisfies

(XTX+ λI)β = XTY

• Note: (XTX+ λI) is positive definite, and thus invertible

• Thus
β̂RIDGE = (XTX+ λI)−1XTY



ℓ2 (Tikhonov) regularization

β̂RIDGE = (XTX+ λI)−1XTY

• When λ > 0, the estimator is defined even when n < p

• When λ = 0 and n > p, we recover the usual least squares
solution



The Lasso



Lasso

• The Lasso (Least Absolute Shrinkage and Selection Operator)

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

• As with ridge regression, the lasso shrinks the coefficient
estimates towards zero

• However, the ℓ1 penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when λ is
sufficiently large

• the lasso performs variable selection → models are easier to
interpret



Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s



Lasso: alternative form



Lasso

• The Lasso:

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

• More “global” approach to selecting variables compared to
previously discussed greedy approaches

• Can be seen as a convex relaxation of the β̂0 problem

• No closed form solution, but can solved efficiently using
convex optimization methods.

• Performs well in practice

• Very popular. Active area of research



Other shrinkage methods

• ℓq regularization (q ≥ 0):

β̂ = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]q



Other shrinkage methods

• Elastic net

λ

p∑
j=1

α[β(j)]2 + (1− α)|β(j)|



Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s



Lasso: alternative form



Linear model: settings

• Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)





Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• Higher values of p lead to more complex model → increases
prediction power/accuracy

• Higher values of p make it more difficult to interpret the
model



Regularization

• ℓ0 regularization

β̂0 = min
β

∥Y− Xβ∥22 + λ

p∑
i=1

1β(i) ̸=0

• Ridge regression/Tikhonov regularization

β̂RIDGE = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]2

• Lasso

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|



Choosing parameters: cross-validation

• ℓ0, ridge, lasso have regularization parameters λ

• We obtain a family of estimators as we vary the parameter(s)

• optimal parameters needs to be chosen in a principled way

• cross-validation is a popular approach for rigorously choosing
parameters.



K-fold cross-validation



K-fold cross-validation



K-fold cross-validation



Demo: Cross-validation with Lasso


