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Model consistency of lasso



The Lasso



Settings

Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |





Linear model: settings

• Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)


• Least squares regression

β̂LS = min
β

∥Y− Xβ∥22



Lasso

• The Lasso (Least Absolute Shrinkage and Selection Operator)

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|



Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s



Lasso: alternative form



When the lasso fails



When the lasso fails



Lasso: model consistency



Model selection consistency lasso

• Note: Model consistency of lasso
• Further readings:

• Zhao and Yu (2006)
• Wainright (2009)
• Sparsity, the lasso, and friends (Ryan Tibshirani)



Settings

• We start with the simple linear regression problem

Y = β(1)X (1) + β(2)X (2) + ϵ, ϵ ∼ N (0, σ2)

• Sparsity: assume that the data is generated using the “true”
vector of parameters β∗ = (β∗(1), 0).

• We assume that E [X (1)] = E [X (2)] = 0.



Matrix form

• we observe a dataset (x1, y1), (x2, y2), . . . , (xn, yn)

• use the same notations as in the previous lectures

Y =


y1
y2
. . .
yn

 X =

x (1)1 x
(2)
1

. . . . . .

x
(1)
n x

(2)
n





Goal

The lasso estimator solves the optimization problem

β̂ = min
β

1

2
∥Y− Xβ∥22 + λ(|β(1)|+ |β(2)|).

We want to investigate the conditions under which we can verify
that

sign(β̂(1)) = sign(β∗(1)) and β̂(2) = 0



Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition
We say that a vector s ∈ Rp is a subgradient for the ℓ1-norm
evaluated at β ∈ Rp, written as s ∈ ∂∥β∥ if for i = 1, . . . , p we
have

s(i) = sign(β(i)) if β(i) ̸= 0 and si ∈ [−1, 1] otherwise.



Properties of lasso solutions

Theorem

(a) A vector β̂ solve the lasso program if and only if there exists a
ẑ ∈ ∂∥β̂∥ such that

XT (Y− Xβ̂)− λẑ = 0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual
feasibility condition

|ẑ(2)| < 1

then any lasso solution β̃ satisfies β̃(2) = 0.

(c) Under the condition of part (b), if X(1) ̸= 0, then β̂ is the
unique lasso solution.



The primal-dual witness method.
The primal-dual witness (PDW) method consists of constructing a
pair of (β̃, z̃) according to the following steps:

• First, we obtain β̃(1) by solving the restricted lasso problem

β̃(1) = min
β=(β(1),0)

1

2
∥Y− Xβ∥22 + λ(|β(1)|).

Choose a subgradient z̃(1) ∈ R for the ℓ1-norm evaluated at
β̃(1)

• Second, we solve for a vector z̃(2) satisfying equation (0.1),
and check whether or not the dual feasibility condition
|z̃(2)| < 1 is satisfied

• Third, we check whether the sign consistency condition

z̃(1) = sign(β∗(1))

is satisfied.



PDW

• This procedure is not a practical method for solving the
ℓ1-regularized optimization problem, since solving the
restricted problem in Step 1 requires knowledge about the
sparsity of β∗

• Rather, the utility of this constructive procedure is as a proof
technique: it succeeds if and only if the lasso has a optimal
solution with the correct signed support.



A more detailed computation

We note that the matrix form of equation (0.1) can be written as

[X(1)]T (Y− X(1)β(1) − X(2)β(2))− λẑ(1) = 0

[X(2)]T (Y− X(1)β(1) − X(2)β(2))− λẑ(2) = 0

To simplify the notation, we denote

Cij = [X(i)]T [X(j)]



Step 1

• we find β̃(1) and z̃(1) that satisfies

[X(1)]T (Y− X(1)β̃(1))− λz̃(1) = 0

• Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

z̃(1) = sign(β∗(1)) and β̃(1) = C−1
11 ([X(1)]TY−λsign(β∗(1))).

This is acceptable as long as z̃(1) ∈ ∂|β̃(1)|. That is,

sign(β̃(1)) = sign(β∗(1))



Step 2

• Step 2:
[X(2)]T (Y− X(1)β̃(1))− λz̃(2) = 0

• Choose

z̃(2) =
1

λ
[X(2)]T (Y− X(1)β̃(1)).

We want |z̃(2)| < 1.



Conditions

In principle, we want two conditions:

• sign(β∗(1)) = sign(β∗(1) +∆)
where

∆ = C−1
11 ([X(1)]T ϵ− λsign(β∗(1))))

• |z̃(2)| < 1 where

z̃(2) =
1

λ
[X(2)]T (X(1)∆+ ϵ)



Zero-noise setting

• we assume that the observations are collected with no noise
(ϵ = 0).

• Then
∆ = −C−1

11 λsign(β∗(1))

and

z̃(2) =
−1

λ
C21∆ = C21C

−1
11 sign(β∗(1))

• Conditions
• Mutual incoherence: |C21C

−1
11 | < 1.

• Minimum signal: |β∗(1)| > λC−1
11



Co-linearity

• Mutual incoherence: |C21C
−1
11 | < 1.

• Recall that

C12 = [X(1)]T [X(2)] =
∑
i

x
(1)
i x

(2)
i

• When n is large

1

n
C12 → E

(
[X (1)]T [X (2)]

)
= Cov(X (1),X (2))

since E [X (1)] = E [X (2)] = 0.



Conditions

• Mutual incoherence: |C21C
−1
11 | < 1.

The condition roughly means that the covariance between the
variables X (1) and X (2) are less than the variance of X (1)

• Minimum signal: |β∗(1)| > λC−1
11

Since
1

n
C11 → Var(X (1)),

this means that when n → ∞, we needs

λn

n
→ 0



Noisy setting

In principle, we want two conditions:

• sign(β∗(1)) = sign(β∗(1) +∆)
where

∆ = C−1
11 ([X(1)]T ϵ− λsign(β∗(1))))

• |z̃(2)| < 1 where

z̃(2) =
1

λ
[X(2)]T (X(1)∆+ ϵ)

• We want an upper bound on

[X(1)]T ϵ and[X(2)]T ϵ



Properties of Gaussian random variables

In principle, we want two conditions:

• [X(1)]T ϵ is a Gaussian random variable with mean 0 and
standard deviation σ∥X(1)∥2

• Thus, there exists a universal constant C such that

|[X(1)]T ϵ| ≤ Cσ

√
nVar(X (1)) log

(
1

δ

)
with probability at least 1− δ



General settings


