Mathematical techniques in data science

Model consistency of lasso
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Linear model: settings

® Linear model
y =80 4 gMx®) 4 g@x(2) 4 gl xe) 4 ¢

® Equivalent to

B0
Y — X5, 5 51
)
® | east squares regression

ﬂszgﬂw—xm%



Lasso

® The Lasso (Least Absolute Shrinkage and Selection Operator)

P
plasso — min ¥ - XI5+ XY 18V
j=1



Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max
argument)
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p
subject to Z 189 <'s
j=1



Lasso: alternative form

FIGURE 6.7. Confours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1| + |Bz| < s and 37 + 83 < s, while the red ellipses are the contours of
the RSS.
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Lasso: model consistency
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Model selection consistency lasso

® Note: Model consistency of lasso

® Further readings:
® Zhao and Yu (2006)
® Wainright (2009)
® Sparsity, the lasso, and friends (Ryan Tibshirani)



Settings

® We start with the simple linear regression problem
y =MWxM0 L g@XA) Lo e~ N(0,02?)

® Sparsity: assume that the data is generated using the “true”
vector of parameters 5* = (B*(l), 0).

® We assume that E[X(1] = E[X?®)] = 0.



Matrix form

® we observe a dataset (x1,y1), (x2,¥2),- -, (Xn, ¥n)

® use the same notations as in the previous lectures

n Xl(l) X£2)
Y= | X=1.. ..

- 1 (2

i X5 Xp



Goal

The lasso estimator solves the optimization problem
A o1
B = min SIY = X8I+ A(18]| +5).
We want to investigate the conditions under which we can verify

that . A
sign(B) = sign(5*M) and B® =0



Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition

We say that a vector s € RP is a subgradient for the ¢1-norm
evaluated at § € RP, written as s € 9||3]| if for i=1,...,p we
have

() — sign(ﬂ(i)) if ﬁ(i) #0 and s;€[-1,1] otherwise.



Properties of lasso solutions

Theorem

(a) A vector [3 solve the lasso program if and only if there exists a
2 € 0||B|| such that

XT(Y=XB)=X2=0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual
feasibility condition

120 < 1
then any lasso solution /3’ satisfies 5(2) =0.

(c) Under the condition of part (b), if XX) #£ 0, then {3 is the
unique lasso solution.



The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a
pair of (3, Z) according to the following steps:

® First, we obtain A1) by solving the restricted lasso problem

1) = min E

— 2 (1)
i SIY = XA+ A8,

Choose a subgradient (1) € R for the {1-norm evaluated at

B

* Second, we solve for a vector () satisfying equation (0.1),
and check whether or not the dual feasibility condition
|2)| < 1 is satisfied

® Third, we check whether the sign consistency condition
71 = sign(p* ™)

is satisfied.



PDW

® This procedure is not a practical method for solving the
{1-regularized optimization problem, since solving the
restricted problem in Step 1 requires knowledge about the
sparsity of 5*

® Rather, the utility of this constructive procedure is as a proof
technique: it succeeds if and only if the lasso has a optimal
solution with the correct signed support.



A more detailed computation

We note that the matrix form of equation (0.1) can be written as
XO)T (Y — xW M) — x5y — x2(1) = ¢

X7 (Y — xW M) — x(2)52)y — x2() = ¢

To simplify the notation, we denote

Cj = XV [XV]



Step 1

e we find (V) and (1) that satisfies
XDy = XMWy — x5 = ¢

® Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

2 = sign(p*®) and A = Cﬁl([X(l)]TY—/\sign(B*(l))).
This is acceptable as long as (1) € 9|f(V)|. That is,

sign(51) = sign(5*V)



Step 2

e Step 2:
[XPT (Y = XMWy — \5() = o

® Choose
52) _ i[x(z)]r(y VOE N

We want |2(2)] < 1.



Conditions

In principle, we want two conditions:
e sign(58* 1)) = sign(5*M) + A)

where

A = CH(IXD]Te — Asign(*V))))

e |22)| <1 where

50 = %[x@)]T(x(l)A +o)



Zero-noise setting

® we assume that the observations are collected with no noise
(e =0).
® Then
A = —Citasign(5*)

and

5(2) — _71C21A = Co Cpy'sign(B 1)

e Conditions

® Mutual incoherence: |Co C;7'| < 1.
® Minimum signal: |3*)| > AC;;!



Co-linearity

* Mutual incoherence: |Gy Cp7t| < 1.
® Recall that

Ciz = XD T[X@] = 3" <
® When n is large
1 (N T[x@ (1) x()
;C12—>E([X 171X ]) = Cov(XW, x@)

since E[XM] = E[X®)] = 0.



Conditions

* Mutual incoherence: |Gy C7t| < 1.
The condition roughly means that the covariance between the
variables X(1) and X are less than the variance of X(1)
* Minimum signal: |3*(M| > \C
Since 1
;Cll — Var(X(l)),

this means that when n — oo, we needs

An
— =0
n



Noisy setting

In principle, we want two conditions:

o sign(5*W) = sign(5*M) + A)
where
A = CH([XM]e - Asign(5*D)))

e |22)| <1 where
50 = %[X(Z)]T(X(l)A +e)

® \We want an upper bound on

[XM]Te  and[X®)]Te



Properties of Gaussian random variables

In principle, we want two conditions:

o [X(l)]Te is a Gaussian random variable with mean 0 and
standard deviation o|| X

® Thus, there exists a universal constant C such that

XM Te| < CU\/nVar(X(l)) log ((15>

with probability at least 1 — §



General settings

Without loss of generality, assume " = (B7, ..., ;,B:H,...ﬁ;)r where B} # 0 for j=1,.,9
and B} =0for j=g+1,..,p. Let BE‘U = (ﬁ’{,,ﬁ;)f and [3’(‘2) = (ﬁ;‘l,...,ﬁ;). N't?w write Xp(1)
and Xp(2) as the first ¢ and last p — g columns of X, respectively and let C" = an’Xn. By setting
Cli= %Xn(l)fxn(l)- 7= ﬁXn(Z)‘Xn(Z), Ch= %Xn(l)lxn(z) and C3, = %Xn(z)’xn(l)- C" can
then be expressed in a block-wise form as follows:

n Cll
- (% %)
C21 22

Assuming CY, is invertible, we define the following Irrepresentable Conditions
Strong Irrepresentable Condition. There exists a positive constant vector 1

|C£1 (C’fl)_lsign(ﬂ’(‘”)\ <1l-m,

where 1 is a p— g by 1 vector of 1’s and the inequality holds element-wise.
‘Weak Irrepresentable Condition.

|C3y(CTy) sign(Bfyy) < 1,



