Mathematical techniques in data science

Lecture 13: Decision trees

Mathematical techniques in data sciences

A short introduction to statistical learning theory
SVM - the kernel trick
Linear regression — regularization and feature selection

Random forests — boosting and bootstrapping

Decision trees

<O <Fr o«

a
i

Q>

Tree-based methods

® Partition the feature space into a set of rectangles
e Fit a simple model (e.g. a constant) in each rectangle

e Conceptually simple yet powerful

Rs

6

Ry Ry

02 04

Izenman, 2013, Figure 9.1.

Tree-based methods

Advantages:
® Often mimics human decision-making process (e.g. doctor
examining patient).
® Very easy to explain and interpret.
® Can handle both regression and classification problems.
Disadvantage: Basic implementation is generally not
competitive compared to other methods.

However, by aggregating many decision trees and using other
variants, one can improve the performance significantly.

Such techniques may lead to state-of-the-art models.
However, in doing so, one loses the easy interpretability of
decision trees.

Decision trees

To simplify, we will only consider binary decision trees.

X1 <t

ESL, Figure 9.2

Top Left: Not binary. Top Right: binary.
Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.

How to grow a decision tree?

Regression tree:
o Data: y € R", X € R"*P,
o Each observation: (y;,z;) € RPT! i=1,...,n.
Suppose we have a partition of R? into M regions Ry, ..., Ry,.
We predict the response using a constant on each R;:

m

flz)= Zci “1ger;-
i=1

2

In order to minimize >_7 ;(y; — f(x:))?, one needs to choose:

¢ = ave(y; : x; € R;).

How do we determine the regions R;, i.e., how do we “grow” the
tree?
We need to decide:

@ Which variable to split.

@ Where to split that variable.

How to grow a decision tree?

e Finding a (globally) optimal tree is generally computationally
infeasible.
@ We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
seR.
Define the two half-planes:

Ri(j,8) :=={z e RP : z; < s}, Ry(j,s) :=={z e RP : z; > s}.

We choose j, s to minimize

. . L 2 . L 2

min imin >, -a)l+mn Y, (-c)
z;€R1(j,3) z;€R2(j,s)

@ The determination of the splitting point s can be done very

quickly.

@ Hence, determining the best pair (7, s) is feasible.

Repeat the same process to each block.

Stoping and pruning

o Generally, the process is stopped for a given region when there
are less than 5 observations in that region.

Problem with previous methodology:
o Likely to overfit the data.

@ Can lead to poor prediction error.
Pruning the tree. Strategy: Grow a large tree (overfits), and the
prune it (better).

@ Weakest link pruning:
(a-k.a cost complexity pruning)

Let T' C T be a subtree of Tj with |T|
terminal nodes. For a > 0, define:

||
Call) =Y Y (i—im,)+l |
m=14i:z;ERm

Pick a subtree minimizing C,(T).

Stoping and pruning

Pick a subtree T' C Ty minimizing:

||
Coa(T):=> > (i—ir,)" +a-|T]
m=1i:z;ERm,

(Here, Jr,, =average response for observations in R,,.)
@ « is a tuning parameter.
o Trade-off between fit of the model, and tree complexity.
@ Choose « using cross-validation.

Once « has been chosen by CV, use whole dataset to find the tree
corresponding to that value.

Classification trees

@ So far, we discussed regression trees (continuous output).

@ We can easily modify the methodology to predict a categorical
output.

o We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box R; to
minimize the sum of squares in that region:

min (ys — 0)2
ceR
z;€ER;
As a result, we choose:

R 1

C = -+ k
N, Yk

zER;

where NV; denotes the number of observations in R;.

Classification trees

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

R 1
Pik = 3 z 1yer;.

B T1€ER;

We then classify the observations in node i using a majority vote:

k(i) := argmax pyg.
k

Different measures are commonly used to determine how good a
given partition is (and how to split a given partition):
@ Misclassification error: N% > eser, Lyk) = 1 — Pigi)-
L K . A K
@ Gini index: > 1 Pik(l —Pix) =1 — D p; D
(Probability that a randomly chosen point is incorrectly classified.)

© Entropy: — > i, pir log pis-
(Measure of “disorder” in a given category.)

Examples

Let us focus on the top box.

@ (Gini index) Error from classifying according to proportions:

P(error) = P(error|green) P(green) + P(error|blue) P(blue) + P(error|red) P(red)
=3/7-4)74+6/7-1/7+5/7-2/7 = 4/1.

o (Entropy) The probability distribution associated to the top box:

(4/7,2/7,1/7).

Entropy = —(4/7) logy(4/7) — (2/7) log,(2/7) — (1/7) logy(1/7) ~ 1.38.

Best case possible: (1,0,0),(0,1,0),(0,0,1). Entropy = 0.

Worst case possible (1/3,1/3,1/3). Entropy = 1.58.

Bootstrapping, bagging, random forests

«O>» «Fr «E>»

«E)»

nae

Sampling with replacement

with replacement
prob =1/6 prob=1/6

seel || | Jsse e

Population Sample Population Sample

WITHOUT replacement
prob =1/6 prob =1/5

seel L lee e

Population Sample Population Sample

Bootstrap

Bootstrapping: General statistical method that relies on
resampling data with replacement.

Idea: Given data (y;, i), i =1,...,n, construct bootstrap samples
by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3
(yh) 'Th) (yj1) xh) (ykn mkl)

(y'iza -Tz'z) (yjz? sz) (ykw -’Ek2>

(Yin> Tin) (Yins Tjn) (Ykn> Thy)

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y =~ f(z) for data (y;, x;) € RPHL,
@ Construct B € N bootstrap samples.
© Train the method on the b-th bootstrap sample to get f*b(x).
© Compute the average of the estimators:

£ 1 < fxb
oesla) = =3 (@),
=1

o Bagging is often used with regression trees.
@ Can improve estimators significantly.

Bagging

Note: Each bootstrap tree will typically involve different features
than the original, and might have a different number of terminal
nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classification: Use a majority vote from the B trees.

Random forests

Idea of bagging: average many noisy but approximately
unbiased models, and hence reduce the variance.

However, the bootstrap trees are generally correlated.

Random forests improve the variance reduction of bagging by
reducing the correlation between the trees.

Achieved in the tree-growing process through random selection
of the input variables.

Popular method.

Random forests

Random forests: Each time a split in a tree is considered, a
random selection of m. predictors is chosen as split candidates from
the full set of p predictors.

o Typical value for m is ,/p.

@ We construct T4, ..., Tp trees using that method on bootstrap
samples. The random forest (regression) predictor is

.1,‘) = ZT},

For classification: use majority vote.

Advantages

accurate and robust
difficult to interpret compared to a decision tree
does not suffer from the overfitting problem

usually have built-in relative feature importance

Disadvantages

® slow in generating predictions because it has multiple decision
trees

o difficult to interpret compared to a decision tree

Demo: Random forests

use the California housing dataset
fit a decision tree
fit a random forest

investigate feature importance

Boosting

<O <Fr o«

a
i

Q>

Convexification of the hypothesis space

Moving out of the hypothesis space

=] 5 = = £ DA

Adaboost

Algorithm 10.1 AdaBoost. M1.

1. Initialize the observation weights w; = 1/N, i=1,2,...,N.
2. Form = 1to M:
(a) Fit a classifier G, () to the training data using weights w;.
(b) Compute
Y wil (y: # Gon(a:)
Z?: 1 wy
(e¢) Compute a,, = log((1 — err,)/erry,).
(d) Set w; «— w; - explam - Iy # Gm(xi))], i=1,2,...,N.

err,,, =

3. Output G(x) = sign [Z‘::l ame(x)].

Adaboost

Adaboost

3.
‘1

D,
+
® @~ o
. o
- . _
€,=0.30
0,=0.42

Q>

O
Adaboost

D3
+ +
L .
- X
£2=0_21
05=0.65

Q>

O
Adaboost

Q>

Adaboost

= Slg-u 042
final

+0.65

+092

«O> < Fr «=>»

«=>

Q>

Gradient boosting: history

» Invent Adaboost, the first successful boosting algorithm
[Freund et al., 1996, Freund and Schapire, 1997]

» Formulate Adaboost as gradient descent with a special loss
function[Breiman et al., 1998, Breiman, 1999]

> Generalize Adaboost to Gradient Boosting in order to handle

a variety of loss functions
[Friedman et al., 2000, Friedman, 2001]

Test Ermror

0.5

0.4

0.3

0.2

0.1

0.0

Gradient boosting

Single Stump

244 Node Tree
T T T T T
0 100 200 300 400

Boosting lterations

Gradient descent

Gradient Descent
Minimize a function by moving in the opposite direction of the
gradient. _

aJd

9;‘ :9;—,0%
Ui

Figure: Gradient Descent. Source:
http://en.wikipedia.org/wiki/Gradient_descent

Gradient boosting

\ MSE Loss Function

v-By

Gradient boosting

Boosting: Recursively fit trees to residuals. (Compensate the
shortcoming of previous model.)
Input: (y;, ;) € R i=1..... n. Initialize f(x) =0, r; = y;.

O Fit a tree estimator f¥ with d splits to the training data.
@ Update the estimator using:

f(w) = flo)+ - o).
© Update the residuals:
T, 1 — A- fb(.l’i).
Output: Boosted tree:

B
Ja) =3 Af@).
i=1

Gradient boosting

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(z) = arg min,, Ea\=1 L(yi,).
2. Form =1to M:

(a) Fori=1,2,..., N compute

Tim = — [W} f=fms

(b) Fit a regression tree to the targets ry,, giving terminal regions
ij: .?: 1325-":‘]??1-

(¢) For j=1,2,...,J, compute

7jm = argmin > L(ys fmoa(m:) +17)-

T ERgm

(d) Update fyu(2) = frm1(x) + 77 YimI (2 € Rjm).

3. Output f(z) = far ().

Gradient boosting

sklearn.ensemble ; Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection.

User guide: See the Ensemble methods section for further details.
ensemble.AdaBoostClassifier ([...]) An AdaBoost classifier.
ensemble.AdaBoostRegressor ([base_estimator, ...]) An AdaBoost regressor.
ensemble.BaggingClassifier ([Dase_estimator, ...]) A Bagging classifier.
ensemble.BaggingRegressor ([Dase_estimator, ...]) A Bagging regressor.
ensemble.ExtraTreesClassifier ([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor ([N_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier ([lOSS, ...]) Gradient Boosting for classification.

) Gradient Boosting for regression.

ensemble.GradientBoostingRegressor ([|OSS;

ensemble.IsolationForest ([N_estimators, ...]) Isolation Forest Algorithm
ensemble.RandomForestClassifier ([...]) A random forest classifier.
ensemble.RandomForestRegressor ([...]) A random forest regressor.
ensemble.RandomTreesEmbedding ([...]) An ensemble of totally random trees.

ensemble.VotingClassifier (estimators], ...]) Soft Voting/Majority Rule classifier for unfitted estimators.

Gradient boosting

dmlc
XGBoost eXtreme Gradient Boosting

build | passing] build passing | @) build | passing license | Apache 2.0 | CRAN [0.82.1 | pypi package |0.82

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It
implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting
(also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major
distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.

