Mathematical techniques in data science

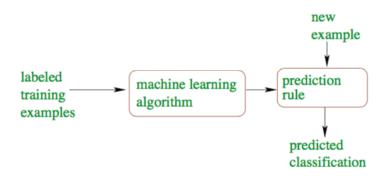
Lecture 14: Principal component analysis (PCA)

Topics

- By problems:
 - Classification
 - Regression
 - Manifold learning
 - Clustering
- By methods:
 - Classical regression-based methods
 - Tree-based methods
 - Network-based methods

- By meta-level techniques:
 - Regularization
 - Kernel methods
 - Boosting

Diagram of a typical supervised learning problem

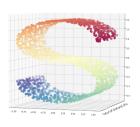


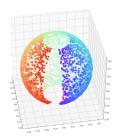
Supervised learning: learning a function that maps an input to an output based on example input-output pairs

Unsupervised learning

- Unsupervised learning
 - learning an unlabelled dataset: we observe a vector of measurements x_i but no associated response Y⁽ⁱ⁾
 - searching for indirect hidden structures, patterns or features to analyze the data
- Problems:
 - Manifold learning
 - Clustering
 - Anomoly detection

Low dimensional structures in data





- high-dimensional data often has a low-rank structure
- Question: how can we discover low dimensional structures in data?

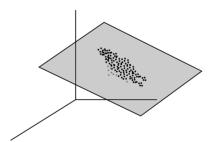
Manifold learning

- learning geometric and topological structures of high-dimensional manifolds (smooth surfaces)
- learning the low-dimensional approximation (or embedding) to visualize the dataset
- learning the mapping from high-dimensional manifold to its low-dimensional embedding

Manifold learning: methods

- Principal component analysis
- Multi-dimensional scaling (MDS)
- Locally linear embedding (LLE)
- Spectral embedding
- t-distributed Stochastic Neighbor Embedding (t-SNE)

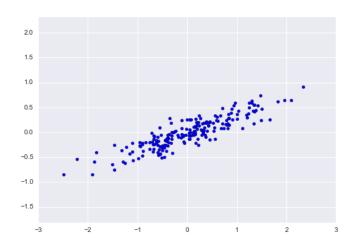
Principal component analysis



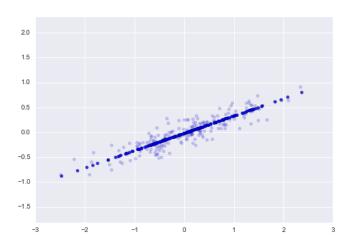
Problem: How can we discover low dimensional structures in data?

- Principal components analysis: construct projections of the data that capture most of the *variability* in the data.
- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.

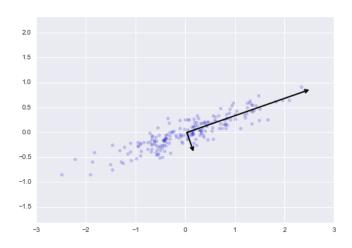
PCA



PCA: first component



PCA: second component



PCA: formulation

We have a random vector X

$$X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \\ \vdots \\ X^{(p)} \end{pmatrix}$$

with mean 0 and population variance-covariance matrix

$$\operatorname{var}(X) = \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_p^2 \end{pmatrix}$$

PCA: formulation

Consider the linear combinations

$$Y^{(1)} = w_{11}X^{(1)} + w_{12}X^{(2)} + \dots + w_{1p}X^{(p)}$$

$$Y^{(2)} = w_{21}X^{(1)} + e_{22}X^{(2)} + \dots + w_{2p}X^{(p)}$$

$$\dots$$

$$Y^{(p)} = w_{p1}X^{(1)} + w_{p2}X^{(2)} + \dots + w_{pp}X^{(p)}$$

then

$$var(Y^{(i)}) = \sum_{k=1}^{p} \sum_{l=1}^{p} w_{ik} w_{il} \sigma_{kl} = w_{i} \Sigma w_{i}^{T}$$

and

$$cov(Y^{(i)}, Y^{(j)}) = \sum_{k=1}^{p} \sum_{l=1}^{p} w_{ik} w_{jl} \sigma_{kl} = w_i \Sigma w_j^T$$

PCA: formulation

- Let $X \in \mathbb{R}^{n \times p}$
- We think of X as n observations of a random vector $(X^{(1)}, X^{(2)}, \dots, X^{(p)}) \in \mathbb{R}^p$
- Suppose each column has mean 0
- We want to find a linear combination

$$\beta^{(1)}X^{(1)} + \beta^{(2)}X^{(2)} + \ldots + \beta^{(p)}X^{(p)}$$

with maximum variance.

(Intuition: we look for a direction where the data varies the most.)

PCA

• In practice, we don't know the covariance matrix $\Sigma = E[X^T X]$, and we need to approximate that by

$$\hat{\boldsymbol{\Sigma}} = \boldsymbol{X}^{\boldsymbol{\mathsf{T}}}\boldsymbol{X}$$

We want to solve

$$w^{(1)} = \arg\max_{\|w\|=1} w \hat{\Sigma} w^T$$

Note that

$$\sum_{i=1}^{n} |\langle x_i, w \rangle|^2 = \|\mathbf{X} w^T\|^2 = w \mathbf{X}^T \mathbf{X} w^T = w \hat{\Sigma} w^T$$

PCA: first component

We solve

$$w^{(1)} = \arg\max_{\|w\|=1} w \hat{\Sigma} w^T$$

• Known result:

$$\max_{\|w\|=1} wAw^T = \lambda_{max}$$

where λ_{max} is the largest eigenvalue of A, and the equality is obtained if w is an eigenvector corresponding to λ_{max}

Proof

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The *Rayleigh* quotient is defined by

$$R(A, x) = \frac{x^T A x}{x^T x} = \frac{\langle A x, x \rangle}{\langle x, x \rangle}, \qquad (x \in \mathbb{R}^p, x \neq \mathbf{0}_{p \times 1}).$$

Observations:

- If $Ax=\lambda x$ with $\|x\|_2=1$, then $R(A,x)=\lambda$. Thus, $\sup_{x\neq 0} R(A,x) \geq \lambda_{\max}(A).$
- ② Let $\{\lambda_1,\dots,\lambda_p\}$ denote the eigenvalues of A, and let $\{v_1,\dots,v_p\}\subset\mathbb{R}^p$ be an orthonormal basis of eigenvectors of A. If $x=\sum_{i=1}^p\theta_iv_i$, then $R(A,x)=\frac{\sum_{i=1}^p\lambda_i\theta_i^2}{\sum_{i=1}^n\theta_i^2}$. It follows that $\sup_{x\neq 0}R(A,x)\leq\lambda_{\max}(A).$

Thus,
$$\sup_{x \neq 0} R(A, x) = \sup_{\|x\|_2 = 1} x^T A x = \lambda_{\max}(A)$$
.

PCA: second component

We look for a new linear combination of the Xi's that

- is orthogonal to the first principal component, and
- maximizes the variance.

In other words

$$w^{(2)} = \arg\max_{\|w\|=1; w \perp w^{(1)}} w \hat{\Sigma} w^T$$

Using a similar argument as before, we have

$$\hat{\Sigma}w^{(2)} = \lambda_2w^{(2)}$$

where λ_2 is the second largest eigenvalue

PCA: high-order components

We solve

$$w^{(k+1)} = \arg\max_{\|w\|=1; w \perp w^{(1)}, \dots, w^{(k)}} w \hat{\Sigma} w^T$$

• Using the same arguments as before, we have

$$\hat{\Sigma}w^{(k+1)} = \lambda_{k+1}w^{(k+1)}$$

where λ_{k+1} is the $(k+1)^{th}$ largest eigenvalue

PCA: summary

In summary, suppose

$$X^TX = U\Lambda U^T$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of X^TX .)

- Recall that the columns of U are the eigenvectors of X^TX and the diagonal of Λ contains the eigenvalues of X^TX (i.e., the (square of the) singular values of X).
- \bullet Then the principal components of X are the columns of XU.
- \bullet Write $U=(u_1,\ldots,u_p).$ Then the variance of the i-th principal component is

$$(Xu_i)^T(Xu_i) = u_i^T X^T X u_i = (U^T X^T X U)_{ii} = \Lambda_{ii}.$$

Conclusion: The variance of the i-th principal component is the i-th eigenvalue of X^TX .

• We say that the first k PCs explain $(\sum_{i=1}^k \Lambda_{ii})/(\sum_{i=1}^p \Lambda_{ii}) \times 100$ percent of the variance.

PCA: summary

