
Mathematical techniques in data science

Lecture 15: Manifold learning

Reminders

• Final project presentations: 05/19
(Check your scheduled time)

• Final project report due date: 05/23

• Course evaluation (05/09–05/16)

Manifold learning

• high-dimensional data often has a low-rank structure

• question: how can we discover low dimensional structures in
data?

Some definitions

• Metric space: a space on which one can compute the distance
between any two points

• Manifold: every point has a neighborhood that is
homeomorphic to an open subset of an Euclidean space

• a manifold is locally Euclidean while globally its structure is
more complex

• The dimension of a manifold is equal to the dimension of this
Euclidean space

Topics

• Linear methods
• Principal component analysis
• Multi-dimensional scaling (MDS)

• Non-linear methods
• Isomap
• Spectral embedding
• Locally linear embedding (LLE)
• t-distributed Stochastic Neighbor Embedding (t-SNE)

Principal component analysis

Multidimensional scaling

Multidimensional scaling (MDS)

• is a means of visualizing the level of similarity of individuals of
a dataset

• seeks a low-dimensional representation of the data that
respects the distances in the original high-dimensional space

• the goal of an MDS analysis is to find a spatial configuration
of objects when all that is known is some measure of their
general (dis)similarity

Problem settings

• The data to be analyzed is a collection of n objects on which
a distance function is defined: dij is the distance between
objects i and object j

• Given dij , MDS want to finds vector z1, z2, . . . , zn ∈ Rd such
that

dij ≈ ∥zi − zj∥

• MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ∥xi − xj∥)2

Problem settings

MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ∥xi − xj∥)2

MDS

• MDS is formulated as an optimization problem

min
x1,...,xn

∑
i<j

(dij − ∥xi − xj∥)2

• the idea is simple, but is easily generalizable

MDS

Isometric feature mapping (Isomap)

Distance on a manifold

Isomap

Isomap differs from MDS in one vital way - the construction of the
distance matrix.

• In MDS, the distance between two points is just the euclidean
distance

• In Isomap, the distances between points are the weight of the
shortest path in a point-graph

Isomap: neighbor graph

• For each point, determine either
• K nearest neighbors
• all points in a fixed radius

• Construct a neighborhood graph.
• each point is connected to other if it is a K nearest neighbor.
• edge length equal to Euclidean distance between the points

Neighbor graph

Isomap: compute intrinsic distance

• Compute shortest path between two nodes
• Dijkstra’s algorithm
• Floyd–Warshall algorithm

• Compute lower-dimensional embedding using MDS

• The graph distance is non-Euclidean, so when embedded back
into Euclidean space, some distortion occur

Intrinsic distance

Isomap

Locally linear embedding

Locally linear embedding

• A manifold is locally Euclidean while globally its structure is
more complex

• Locally, the relation between data points in a neighborhood is
linear/affine

• Idea: try to preserve this linear structure

Locally linear embedding

LLE

t-distributed stochastic neighbor embedding

t-SNE

• All methods proposed so far are great, and they work well if
M is a manifold of low-dimension (2 dimension)

• Sometimes, even if the dimension of M is high, we still want
to embed it to R2 for learning

t-SNE

• There are many problems with embedding high-dimensional
manifold to low-dimensional space

• Structural differences
• in ten dimensions, it is possible to have 11 data points that are

mutually equidistant
• there is no way to model this faithfully in a two-dimensional

map

• Crowding problem:
• the volume of a sphere centered on datapoint i scales as rm,

where r is the radius and m the dimensionality of the sphere
• the area of the two-dimensional map that is available to

accommodate moderately distant data points will not be
nearly large enough compared with the area available to
accommodate nearby data points

Stochastic neighbor embedding

• converting the high-dimensional Euclidean distances between
data points into conditional probabilities that represent
similarities

• The similarity of datapoint xj to datapoint xi is the
conditional probability, pj |i , that xi would pick xj as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at xi

Stochastic neighbor embedding

• Assume that the data points are mapped to y1, y2, . . . , yn in
low-dimension

• we construct a similar quantity for a y

• Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij

t-SNE

• employ a Student t-distribution with one degree of freedom
(which is the same as a Cauchy distribution) as the
heavy-tailed distribution in the low-dimensional map

• Goal: Minimize the difference between the two probabilities

min
y

∑
i

∑
j

pij log
pij
qij

Visualization of MNIST by t-SNE

Visualization of MNIST by Isomap

Laplace eigenmap

The Laplace-Beltrami operator

• Let M be a manifold. We look for a map from the manifold
such that points close together on the manifold are mapped
close together

• Locally, we have

f (z)− f (x) ≈ ⟨∇f (x), z − x⟩

and ∥∇f (x)∥ is a measure of local distortion by the map

• Idea:

min
∥f ∥L2(M)=1

∫
M

∥∇f ∥2

The Laplace-Beltrami operator

• Idea:

min
∥f ∥L2(M)=1

∫
M

∥∇f ∥2

• Define
L(f) = −div∇f

then ∫
M

∥∇f ∥2 =
∫
M

L(f)f

The Laplace-Beltrami operator

• We have ∫
M

∥∇f ∥2 =
∫
M

L(f)f = ⟨L(f), f ⟩

• Problem: in manifold learning, we don’t have information
about the manifold, just a sample of it

• Question: how to approximate L(f) by the samples?

Heat kernel

In Rm, we know that the heat equation

ut(x , t)− Lu(x , t) = 0

u(x , 0) = f (x)

has solution of the form

u(x , t) =

∫
Ht(x , y)f (y)dy

with

Ht(x , y) ≈ (4πt)−m/2e−
|x−y|2

4t

when t ≈ 0 and x ≈ y , and

lim
t→0

∫
Ht(x , y)f (y)dy = f (x)

Heat kernel

• We deduce that

Lf (x) = Lfu(x , 0) = −ut(x , t)|t=0

≈ 1

t

[
f (x)− (4πt)−m/2

∫
e−

|x−y|2
4t f (y)

]
• Sketchy maths

• locally, M are just Euclidean space, and heat are transferred in
a very similar way

• If t is small, long term interaction on the manifold are killed
• Laplace of a constant function is 0

Approximating the Laplace operator

Lf (x) ≈ 1

t

[
f (x)− (4πt)−m/2

∫
e−

|x−y|2
4t f (y)

]
• Sketchy maths

• locally, M are just Euclidean space, and heat are transferred in
a very similar way

• If t is small, long term interactions on the manifold are killed
• Laplace of a constant function is 0

• Then Lf (xi) can be approximate by

C

f (xi) ∑
0<|xi−xj |<ϵ

e−
|x−y|2

4t −
∑

0<|xi−xj |<ϵ

e−
|xi−xj |

2

4t f (xj)



Approximating the Laplace operator

• Lf (xi) can be approximate by

C

f (xi) ∑
0<|xi−xj |<ϵ

e−
|x−y|2

4t −
∑

0<|xi−xj |<ϵ

e−
|xi−xj |

2

4t f (xj)


• Denote

Wij = e−
|xi−xj |

2

4t , |xi − xj | < ϵ

and D is the diagonal matrix with entry Dii =
∑

j Wij

• We want to find f such that

⟨(D −W)f , f ⟩

is minimized

Laplace eigenmap

Step 1: Construct the neighbor graph
• For each point, determine either

• K nearest neighbors
• all points in a fixed radius

• each point is connected to its neghbours

• edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t

Laplace eigenmap

Step 2: Embedding by Laplace operator’s eigenvectors

• Define L = D −W

• We want to minimize

min
⟨Df ,f ⟩=1

⟨Lf , f ⟩

• Solve for eigenvectors {f1, f2, . . . , fm}
• Map

x → (⟨f1, x⟩, ⟨f2, x⟩, . . . , ⟨fm, x⟩)

