Mathematical techniques in data science

Lecture 15: Manifold learning



Reminders

¢ Final project presentations: 05/19
(Check your scheduled time)

® Final project report due date: 05/23
e Course evaluation (05/09-05/16)



Manifold learning
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® high-dimensional data often has a low-rank structure

® question: how can we discover low dimensional structures in
data?



Some definitions

Metric space: a space on which one can compute the distance
between any two points

Manifold: every point has a neighborhood that is
homeomorphic to an open subset of an Euclidean space

a manifold is locally Euclidean while globally its structure is
more complex

The dimension of a manifold is equal to the dimension of this
Euclidean space



Topics

® Linear methods
® Principal component analysis
® Multi-dimensional scaling (MDS)

® Non-linear methods

Isomap
Spectral embedding

Locally linear embedding (LLE)

t-distributed Stochastic Neighbor Embedding (t-SNE)



Principal component analysis

Problem: How can we discover low dimensional structures in data?

@ Principal components analysis: construct projections of the data
that capture most of the variability in the data.

@ Provides a low-rank approximation to the data.

@ Can lead to a significant dimensionality reduction.



Multidimensional scaling
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Multidimensional scaling (MDS)

® is a means of visualizing the level of similarity of individuals of
a dataset

® seeks a low-dimensional representation of the data that
respects the distances in the original high-dimensional space

® the goal of an MDS analysis is to find a spatial configuration
of objects when all that is known is some measure of their
general (dis)similarity



Problem settings

® The data to be analyzed is a collection of n objects on which
a distance function is defined: dj; is the distance between
objects i and object j

® Given dj;, MDS want to finds vector z1, 2z, ..., 2, € R9 such
that

dj ~ [|zi — z
® MDS is formulated as an optimization problem

1 2
min > (dj — [lx — x)

i<j



Problem settings
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MDS is formulated as an optimization problem

i 2
min > (d — [l = )
1<J



MDS

e MDS is formulated as an optimization problem
: 2
min Z (dij — lIxi = xill)
1<J

® the idea is simple, but is easily generalizable
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Isometric feature mapping (Isomap)
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Distance on a manifold




Isomap

Isomap differs from MDS in one vital way - the construction of the
distance matrix.

® |n MDS, the distance between two points is just the euclidean
distance

® In Isomap, the distances between points are the weight of the
shortest path in a point-graph



Isomap: neighbor graph

® For each point, determine either

® K nearest neighbors
® all points in a fixed radius

e Construct a neighborhood graph.

® each point is connected to other if it is a K nearest neighbor.
® edge length equal to Euclidean distance between the points



Neighbor graph




Isomap: compute intrinsic distance

® Compute shortest path between two nodes
® Dijkstra’s algorithm
® Floyd—Warshall algorithm
e Compute lower-dimensional embedding using MDS
® The graph distance is non-Euclidean, so when embedded back
into Euclidean space, some distortion occur



Intrinsic distance
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Locally linear embedding
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Locally linear embedding

® A manifold is locally Euclidean while globally its structure is
more complex

® |ocally, the relation between data points in a neighborhood is
linear/affine

® |dea: try to preserve this linear structure



Locally linear embedding

1. For each data point z; in p dimensions, we find its K-nearest neigh-
bors N () in Euclidean distance.

2. We approximate each point by an affine mixture of the points in its
neighborhood:

mln ||IZ Z wigzy||* (14.102)
W kEN (i)

over weights w;, satisfying w;, = 0, k ¢ N(i), z,{?’:l wie = 1. wy
is the contribution of point £ to the reconstruction of point i. Note
that for a hope of a unique solution, we must have K < p.

3. Finally, we find points y; in a space of dimension d < p to minimize

N N
>l = > wikl? (14.103)
=1 k=1

with w;y fixed.



LLE
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t-distributed stochastic neighbor embedding
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t-SNE

e All methods proposed so far are great, and they work well if
M is a manifold of low-dimension (2 dimension)

® Sometimes, even if the dimension of M is high, we still want
to embed it to R? for learning



t-SNE

® There are many problems with embedding high-dimensional
manifold to low-dimensional space
® Structural differences

® in ten dimensions, it is possible to have 11 data points that are
mutually equidistant

® there is no way to model this faithfully in a two-dimensional
map

® Crowding problem:

® the volume of a sphere centered on datapoint i scales as r'”,
where r is the radius and m the dimensionality of the sphere

® the area of the two-dimensional map that is available to
accommodate moderately distant data points will not be
nearly large enough compared with the area available to
accommodate nearby data points



Stochastic neighbor embedding

® converting the high-dimensional Euclidean distances between
data points into conditional probabilities that represent
similarities

® The similarity of datapoint x; to datapoint x; is the
conditional probability, p;;, that x; would pick x; as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at x;

e (i )/20)
T Seaexp (- xP/20%)




Stochastic neighbor embedding

® Assume that the data points are mapped to yi, ¥2,...,¥s in
low-dimension

® we construct a similar quantity for a y

_exp(=lyi—yil?)
Szrexp (—[lyx —yill?)

ij
® Goal: Minimize the difference between the two probabilities

myin ZZPU log Py
i

qaij



t-SNE

employ a Student t-distribution with one degree of freedom
(which is the same as a Cauchy distribution) as the
heavy-tailed distribution in the low-dimensional map

-1

(M llyi—yilP)

- —1
Szt (L llye —vi1?)

Goal: Minimize the difference between the two probabilities

myin Z ; pjj log Pi

qij

4ij



Visualization of MNIST by t-SNE
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Visualization of MNIST by Isomap




Laplace eigenmap
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The Laplace-Beltrami operator

Let M be a manifold. We look for a map from the manifold
such that points close together on the manifold are mapped
close together

Locally, we have
f(z) — f(x) = (VFf(x),z—x)

and |[Vf(x)]|| is a measure of local distortion by the map

min / HVfH2
11l (=1 J m

Idea:



The Laplace-Beltrami operator

® |dea:
min / HVfH2
1Nl (=1 J M
® Define
L(f) = —divVf
then

e[ e



The Laplace-Beltrami operator

® \We have

/ IV = / C(F)F = (L(F), )
M M

® Problem: in manifold learning, we don't have information
about the manifold, just a sample of it

® Question: how to approximate £(f) by the samples?



Heat kernel

In R™, we know that the heat equation

ur(x,t) — Lu(x,t) =0

has solution of the form
ulx,t) = [ Hhlx,)F(v)dy

with
lx—y|?

He(x,y) ~ (4mt)""/2e”

when t =~ 0 and x = y, and

im / He(x, y)F(y)dy = F(x)

t—0



Heat kernel

® \We deduce that

Lf(x) = Lfu(x,0) = —u(x, t)]t=0

1 _lx=yl?

~ = f(x)—(47rt)m/2/e at f(y)}

t

® Sketchy maths
® |ocally, M are just Euclidean space, and heat are transferred in
a very similar way
® |f t is small, long term interaction on the manifold are killed
® |aplace of a constant function is 0



Approximating the Laplace operator

_ eyl

()~ (o) ™72 [ 5 r(y)

Lf(x)~

~ | =

® Sketchy maths

® |ocally, M are just Euclidean space, and heat are transferred in
a very similar way

® |f t is small, long term interactions on the manifold are killed

® Laplace of a constant function is 0

® Then Lf(x;) can be approximate by

Ix; —x; |2

x—y|? i
Clie) 3 e — 3 e w f(y)

0<|xi—xj|<e 0<|x;j—xj|<e




Approximating the Laplace operator

® Lf(x;) can be approximate by

x—y|? i =12
C | f(x) Z e a  — Z e f(x)
0<|xi—xj|<e 0<|xi—xj|<e
® Denote
Ixi—x;1?
Wj=e 7, x—xl <

and D is the diagonal matrix with entry D; = Zj Wi
® We want to find f such that

(D—W)f,f)

is minimized



Laplace eigenmap

Step 1: Construct the neighbor graph
® For each point, determine either
® K nearest neighbors
® all points in a fixed radius

® each point is connected to its neghbours

® edge length equal to Euelidean-distancebetweenthepoints

2
|x; —x;1

VVij — e T 4




Laplace eigenmap

Step 2: Embedding by Laplace operator's eigenvectors
® DefineL=D - W

® \We want to minimize

min (Lf,f)
(DFf f)=1
¢ Solve for eigenvectors {fi, f2,...,fm}

°* Map
x = ((f,x), {(f2, x), .., {fm, X))



