
Mathematical techniques in data science

Lecture 16: Clustering



Supervised and unsupervised learning

• Supervised learning problems
• Labelled data (X ,Y ) with joint density P(X ,Y )
• We are mainly interested in the conditional density P(Y |X ).

• Unsupervised learning problems
• Data X is not labelled and has density P(X )
• We want to infer properties of P(X )



Clustering

• Unsupervised problem

• Want to label points according to a measure of their similarity



Clustering



K-means clustering



K-means clustering



Lloyd’s algorithm

Example, Dense

https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif
https://datasciencelab.files.wordpress.com/2013/12/p_n2000_k15_.gif


Convergence of Lloyd’s algorithm

Local mean

https://datasciencelab.files.wordpress.com/2013/12/p_n100_k9_g.gif


Lloyd’s algorithm: initiation step

• There is no guarantee that Lloyds’ algorithm will find the
global optimum

• As a result, we use different starting points
• Common initiation schemes:

• The Forgy method: Pick K observations at random and use
these as the initial means

• Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster

• kmeans++ (default in sklearn)



kmeans++ initiation

Intuition: spreading out the k initial cluster centers is a good thing

• Choose one center uniformly at random from among the data
points.

• For each data point x , compute D(x), the distance between x
and the nearest center that has already been chosen.

• Choose one new data point at random as a new center, using
a weighted probability distribution where a point x is chosen
with probability proportional to D(x)2

• Repeat Steps 2 and 3 until k centers have been chose



Choosing k

• Elbow method

• Cross-validation

• Average silhouette method

• Gap statistic method



Elbow method



Silhouette method

• a measure of how similar an object is to its own cluster
(cohesion) compared to other clusters (separation)

• ranges from [−1, 1]

• The Silhouette coefficient is defined for each sample and is
composed of two scores:

• a: The mean distance between a sample and all other points in
the same class.

• b: The mean distance between a sample and all other points in
the next nearest cluster

• The Silhouette coefficient (sklearn.metrics.silhouette score)
for a single sample is then given as:

s =
b − a

max(a, b)



Issues with k-means

• k-means is limited to linear cluster boundaries

• Solution: adding non-linearities to the model
• kernel k-means
• spectral clustering



Kernel k-means



Kernel k-means = kernel trick + k-means

• Ideas:
• maps the data to a high-dimensional space (called feature

space) by a non-linear function ϕ to separate the clusters
linearly

• Using this high-dimensional representation to run k-means
• Project the data back to the original space to identify the

clusters

• Note: the kernel trick works best if we don’t have to construct
ϕ(x) explicitly, but can compute

K (x , y) = ⟨ϕ(x), ϕ(y)⟩

• For k-means, we need to compute

∥ϕ(xi )−mj∥2



Kernels



Kernel k-means = kernel trick + k-means

Note that

∥ϕ(xi )−mj∥2 = ⟨ϕ(xi )−mj , ϕ(xi )−mj⟩
= ⟨ϕ(xi ), ϕ(xi )⟩ − 2⟨ϕ(xi ),mj⟩+ ⟨mj ,mj⟩

Given a cluster Cj , its center (on feature space) is

mj =
1

|Cj |
∑
b∈Cj

ϕ(b)

Thus

⟨ϕ(xi ),mj⟩ =
1

|Cj |
∑
b∈Cj

⟨ϕ(xi ), ϕ(b)⟩ =
1

|Cj |
∑
b∈Cj

K (xi , b)



Kernel k-means = kernel trick + k-means

Note that

∥ϕ(xi )− µj∥2 = ⟨ϕ(xi )− uj , ϕ(xi )− uj⟩
= ⟨ϕ(xi ), ϕ(xi )⟩ − 2⟨ϕ(xi ), uj⟩+ ⟨uj , uj⟩

Given a cluster Cj , its center (on feature space) is

mj =
1

|Cj |
∑
b∈Cj

ϕ(b)

Thus

⟨mj ,mj⟩ =
1

|Cj |2
∑

b,c∈Cj

K (b, c)



Kernel k-means



Spectral clustering



Recall: Graph-based manifold embedding



Spectral embedding (Laplace eigenmap)

Step 1: Construct the neighbor graph
• For each point, determine either

• K nearest neighbors
• all points in a fixed radius

• each point is connected to its neighbours

• edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t



Spectral embedding (Laplace eigenmap)

Step 2: Embedding by Laplace operator’s eigenvectors

• Define L = D −W

• We want to minimize

min
⟨Df ,f ⟩=1

⟨Lf , f ⟩

• Solve for eigenvectors {f1, f2, . . . , fm}
• Map

x → (⟨f1, x⟩, ⟨f2, x⟩, . . . , ⟨fm, x⟩)



Spectral clustering: overview



Neighbor graph

Step 1: Construct the neighbor graph
• For each point, determine either

• K nearest neighbors
• all points in a fixed radius

• each point is connected to its neighbours

• edge length equal to Euclidean distance between the points

Wij = e−
|xi−xj |

2

4t



Remarks

Wij = e−
|xi−xj |

2

4t

→ the RBF (Gaussian) kernel

• If xi ≈ xj , then ⟨ϕ(xi ), ϕ(xj)⟩ ≈ 0

• If xi is far from xj , then ϕ(xi ) ⊥ xj
• This means that when the RBF kernel is used, we are virtually
mapping the dataset to an infinite dimensional space, where
the points are clustered around some vector that are
perpendicular to each other



Notations



Graph embedding

Step 2:

• Compute eigenvectors of the (normalized or unnormalized)
graph Laplacian

L = D −W , Lsym = D−1/2LD−1/2

• Construct a matrix containing the smallest K eigenvectors of
L or Lsym as columns

• Normalize the rows to have norm 1

• Each row identifies a vertex of the graph to a point in RK



How does spectral clustering work?



Ideal case

• Suppose that k = 3, and the three cluster of size n1, n2, n3
are S1, S2,S3

• Assume that the data S = {x1, x2, . . . , xn} are arranged in
such a way that the first n1 points are in S1, the next n2 in
S2, and so on

• Assume further that the cluster are infinitely far apart



Ideal case

A = D −W =

A11 0 0
0 A22 0
0 0 A33


and

Lsym =

L11 0 0
0 L22 0
0 0 L33


where

Lii = (D ii )−1/2(Aii )(D ii )−1/2

Note: Lii is non-negative definite and have eigenvalues
0 ≤ λ1 ≤ λ2 ≤ . . . λn



Ideal case

• The 3 smallest eigenvectors have the forms (x1, 0, 0), or
(0, x2, 0), or (0, 0, x3)

• Stack them by columns

x =

x1 0 0
0 x2 0
0 0 x3

 ∈ Rn×3

• If we normalize the row, then all points in the first cluster are
mapped to (1, 0, 0)



Variations



Variations



Variations



Example



Example


