
Sparsity, the Lasso, and Friends

Statistical Machine Learning, Spring 2017
Ryan Tibshirani (with Larry Wasserman)

1 Introduction

1.1 Basic setup

• Consider i.i.d. samples (xi, yi) ∈ Rp × R, i = 1, . . . , n from the linear model

yi = xTi β0 + εi, i = 1, . . . , n (1)

where β0 ∈ Rp is an unknown coefficient vector, and εi, i = 1, . . . , n are random errors with
mean zero. Here and throughout, without a loss of generality, we’ll ignore the intercept term.
We can more succintly express this data model as

y = Xβ0 + ε, (2)

where y = (y1, . . . , yn) ∈ Rn is the vector of responses, X ∈ Rn×p is the matrix of predictor
variables, with ith row xi, and ε = (ε1, . . . , εn) ∈ Rn is the vector of errors

• In the above, we have assumed that E(yi|xi) is a linear function of xi. This itself could be a
strong assumption, depending on the situation. Of course, now here comes all the additional
assumptions that make our lives easier, but are worth being explicit about (just as discussed
in our nonparametric regression notes):

– Typically we think of xi, i = 1, . . . , n as fixed, and that εi, i = 1, . . . , n are i.i.d.

– This is is equivalent to conditioning on xi, i = 1, . . . , n, and then assuming that these are
independent of εi = yi − E(yi|xi), i = 1, . . . , n.

– These are strong assumptions. They preclude, e.g., heteroskedasticity, omitted variable
bias, etc.

– Even on top of all this, we typically assume the distribution of the errors εi, i = 1, . . . , n
to be Gaussian, or sub-Gaussian.

• It certainly does sound like we assume a lot, but we’re also going to consider a very difficult
problem: high-dimensional regression, where the dimension p of the predictors is comparable
or even possibly much larger than the sample size n! Also, some of these assumptions can be
relaxed (even the independence of X, ε), at the expense of a more compicated analysis

1.2 The risk of least squares

• Let’s remind ourselves of the risk properties of least squares regression. Let X1, . . . , Xp ∈ Rn
be the columns of the predictor matrix X. The least squares coefficients can be defined as the
solution of the optimization problem

min
β∈Rp

n∑

i=1

(yi − xTi β)2 ⇐⇒ min
β∈Rp

n∑

i=1

(
yi −

p∑

j=1

βjXj

)2

⇐⇒ min
β∈Rp

‖y −Xβ‖22. (3)
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If rank(X) = p, i.e, the predictors X1, . . . , Xp are linearly independent, then the above least
squares problem has a unique solution, which (as you of course must have memorized by now)
is β̂ = (XTX)−1XT y

• The fitted values are Xβ̂ = PXy, where PX = X(XTX)−1XT is the projection matrix onto
the column space of X. These are the predictions at the sample points xi, i = 1, . . . , n. To
make a prediction new point x0 ∈ Rp, we would use xT0 β̂

• It is not hard to see that such least squares predictions are unbiased. Given x0, the point at
which we want to make a prediction, we can condition on X,x0, we compute:

E(xT0 β̂ |X,x0) = xT0 (XTX)−1XTE(y|X) = xT0 β0.

Hence the bias will still be zero after integrating out over X,x0. Note that this unbiasedness
doesn’t actually require the strong assumption of X, ε being independent

• The in-sample risk or simply risk of the least squares estimator is defined as

1

n
E‖Xβ̂ −Xβ0‖22 =

1

n

n∑

i=1

E(xTi β̂ − xTi β0)2 = E(xT1 β̂ − xT1 β0)2,

where X recall has rows xi, i = 1, . . . , n and β0 are the underlying regression coefficients as in
(1), (2). The expectation here is over the randomness in the i.i.d. pairs (xi, yi), i = 1, . . . , n,
and we will we assume that X, ε are independent, as well as ε ∼ N(0, σ2I). To compute it, as
usual, we condition on X:

1

n
E
(
‖Xβ̂ −Xβ0‖22

∣∣X
)

=
1

n
tr
(
Cov(Xβ̂ |X)

)
=

1

n
tr(σ2PX) = σ2 p

n
.

Therefore, integrating out over X, we get that the in-sample risk is again

1

n
E‖Xβ̂ −Xβ0‖22 = σ2 p

n

• The out-of-sample risk or predictive risk of the least squares estimator is defined as

E(xT0 β̂ − xT0 β0)2,

where x0 is a new independent draw from the predictor distribution. To compute it, we again
condition on X,x0:

E(xT0 β̂ − xT0 β0 |X,x0)2 = Var(xT0 β̂ |X,x0) = σ2xT0 (XTX)−1x0,

then integrating out over X,x0:

E(xT0 β̂ − xT0 β0)2 = σ2E
[
tr
(
x0x

T
0 (XTX)−1

)]
= σ2tr

(
E(x0x

T
0 )E

[
(XTX)−1

])
,

where we have used the independence of X,x0. An exact formula will not be possible in full
generality here, since as we can see the out-of-sample risk depends on the distribution of the
predictors. Contrast this with the in-sample risk, which did not

• In general, as shown in Groves & Rothenberg (1969), E[(XTX)−1] − [E(XTX)]−1 is positive
semidefinite, so writing Σ for the covariance of the predictor distribution,

E(xT0 β̂ − xT0 β0)2 = σ2tr
(
E(x0x

T
0 )E

[
(XTX)−1

])
≥ σ2tr

(
Σ

Σ−1

n

)
= σ2 p

n
.

Thus, out-of-sample risk is always larger than in-sample risk, which makes sense, since intu-
itively, actual (out-of-sample) prediction is harder
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• When the predictor distribution is, e.g., N(0,Σ), we can compute the out-of-sample risk ex-
actly. It holds that XTX ∼ W (Σ, n), a Wishart distribution, and (XTX)−1 ∼ W−1(Σ−1, n),
an inverse Wishart distribution, so

E(xT0 β̂ − xT0 β0)2 = σ2tr

(
Σ

Σ−1

n− p− 1

)
= σ2 p

n− p− 1

1.3 The failure of least squares in high dimensions

• When rank(X) < p, e.g., this happens when p > n, there are infinitely many solutions in
the least squares problem (3). Given one solution β̂, the quantity β̂ + η is also a solution for
any η ∈ null(X). Furthermore, this type of nonuniqueness makes interpretation of solutions
meaningless: for at least one j ∈ {1, . . . , p}, we will have β̂j > 0 at one solution β̂, but β̃j < 0
at another solution β̃

• The fitted values from least squares regression are always unique; that is, Xβ̂ = Xβ̃, for any
two solutions β̂, β̃, no matter the column rank of X. This is because we can always write the
fitted values as PXy, where PX is the projection matrix onto the column space of X; recall
PX = X(XTX)+XT where (XTX)+ is the pseudoinverse of XTX (and the projection matrix
to PX = X(XTX)−1XT when X has full column rank)

• But in terms of actual predictions, at say a new point x0 ∈ Rp, it will not generally be the
case that xT0 β̂ = xT0 β̃ for two solutions β̂, β̃ (because the solutions need not be equal)

• So both interpretation and actual predictions are impossible with least squares when p > n,
which is a pretty serious failure

• Even when rank(X) = p, so that a unique least squares solution exists, we still may not want
to use least squares if p is moderately close to n, because its risk could be quite poor (i.e.,
σ2p/n in-sample risk, which will be poor if p is an appreciable fraction of n

• How do we deal with such issues? The short answer is regularization. In our present setting,
we would modify the least squares estimator in one of two forms:

min
β∈Rp

‖y −Xβ‖22 subject to β ∈ C (Constrained form)

min
β∈Rp

‖y −Xβ‖22 + P (β) (Penalized form)

where C is some (typically convex) set, and P (·) is some (typically convex) penalty function

• At its core, regularization provides us with a way of navigating the bias-variance tradeoff: we
(hopefully greatly) reduce the variance at the expense of introducing some bias

1.4 What we cover here

• The goal is to introduce you to some important developments in methodology and theory in
high-dimensional regression. Perhaps biasedly, we will focus on the lasso and related methods.
High-dimensional statistics is both an enormous and enormously fast-paced field, so of course
we will have to leave a lot out. E.g., a lot of what we say carries over in some way to high-
dimensional generalized linear models, but we will not discuss these problems

• There are several great books on high-dimensional estimation, and here are a few:

– Great general reference: Hastie, Tibshirani & Wainwright (2015)

– Great theoretical references: Buhlmann & van de Geer (2011), Wainwright (2017)
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2 Best subset selection, ridge regression, and the lasso

2.1 Three norms: `0, `1, `2

• In terms of regularization, we typically choose the constraint set C to be a sublevel set of a
norm (or seminorm), and equivalently, the penalty function P (·) to be a multiple of a norm
(or seminorm)

• Let’s consider three canonical choices: the `0, `1, and `2 norms:

‖β‖0 =

p∑

j=1

1{βj 6= 0}, ‖β‖1 =

p∑

j=1

|βj |, ‖β‖2 =

( p∑

j=1

β2
j

)1/2

.

(Truthfully, calling it “the `0 norm” is a misnomer, since it is not a norm: it does not satisfy
positive homogeneity, i.e., ‖aβ‖0 6= a‖β‖0 whenever a 6= 0, 1.)

• In constrained form, this gives rise to the problems:

min
β∈Rp

‖y −Xβ‖22 subject to ‖β‖0 ≤ k (Best subset selection) (4)

min
β∈Rp

‖y −Xβ‖22 subject to ‖β‖1 ≤ t (Lasso regression) (5)

min
β∈Rp

‖y −Xβ‖22 subject to ‖β‖22 ≤ t (Ridge regession) (6)

where k, t ≥ 0 are tuning parameters. Note that it makes sense to restrict k to be an integer;
in best subset selection, we are quite literally finding the best subset of variables of size k, in
terms of the achieved training error

• Though it is likely the case that these ideas were around earlier in other contexts, in statistics
we typically subset selection to Beale et al. (1967), Hocking & Leslie (1967), ridge regression
to Hoerl & Kennard (1970), and the lasso to Tibshirani (1996), Chen et al. (1998)

• In penalized form, the use of `0, `1, `2 norms gives rise to the problems:

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖0 (Best subset selection) (7)

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 (Lasso regression) (8)

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖22 (Ridge regression) (9)

with λ ≥ 0 the tuning parameter. In fact, problems (5), (8) are equivalent. By this, we mean
that for any t ≥ 0 and solution β̂ in (5), there is a value of λ ≥ 0 such that β̂ also solves (8),
and vice versa. The same equivalence holds for (6), (9). (The factors of 1/2 multiplying the
squared loss above are inconsequential, and just for convenience)

• It means, roughly speaking, that computing solutions of (5) over a sequence of t values and
performing cross-validation (to select an estimate) should be basically the same as computing
solutions of (8) over some sequence of λ values and performing cross-validation (to select an
estimate). Strictly speaking, this isn’t quite true, because the precise correspondence between
equivalent t, λ depends on the data X, y

• Notably, problems (4), (7) are not equivalent. For every value of λ ≥ 0 and solution β̂ in (7),
there is a value of t ≥ 0 such that β̂ also solves (4), but the converse is not true
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2.2 One of these problems is not like the others: sparsity

• The best subset selection and the lasso estimators have a special, useful property: their solu-
tions are sparse, i.e., at a solution β̂ we will have β̂j = 0 for many components j ∈ {1, . . . , p}.
In problem (4), this is obviously true, where k ≥ 0 controls the sparsity level. In problem (5),
it is less obviously true, but we get a higher degree of sparsity the smaller the value of t ≥ 0.
In the penalized forms, (7), (8), we get more sparsity the larger the value of λ ≥ 0

• This is not true of ridge regression, i.e., the solution of (6) or (9) generically has all nonzero
components, no matter the value of t or λ. Note that sparsity is desirable, for two reasons:
(i) it corresponds to performing variable selection in the constructed linear model, and (ii) it
provides a level of interpretability (beyond sheer accuracy)

• That the `0 norm induces sparsity is obvious. But, why does the `1 norm induce sparsity and
not the `2 norm? There are different ways to look at it; let’s stick with intuition from the
constrained problem forms (5), (8). Figure 1 shows the “classic” picture, contrasting the way
the contours of the squared error loss hit the two constraint sets, the `1 and `2 balls. As the
`1 ball has sharp corners (aligned with the coordinate axes), we get sparse solutions

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β̂2
. .β

1

β 2

β
1

β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

Figure 1: The “classic” illustration comparing lasso and ridge constraints. From Chapter 3 of Hastie
et al. (2009)

• Intuition can also be drawn from the orthogonal case. When X is orthogonal, it is not hard
to show that the solutions of the penalized problems (7), (8), (9) are

β̂subset = H√2λ(XT y), β̂lasso = Sλ(XT y), β̂ridge =
XT y

1 + 2λ

respectively, where Ht(·), St(·) are the componentwise hard- and soft-thresholding functions
at the level t. We see several revealing properties: subset selection and lasso solutions exhibit
sparsity when the componentwise least squares coefficients (inner products XT y) are small
enough; the lasso solution exihibits shrinkage, in that large enough least squares coefficients
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are shrunken towards zero by λ; the ridge regression solution is never sparse and compared to
the lasso, preferentially shrinkage the larger least squares coefficients even more

2.3 One of these problems is not like the others: convexity

• The lasso and ridge regression problems (5), (6) have another very important property: they
are convex optimization problems. Best subset selection (4) is not, in fact it is very far from
being convex

• It is convexity that allows to equate (5), (8), and (6), (9) (and yes, the penalized forms are
convex problems too). It is also convexity that allows us to both efficiently solve, and in some
sense, precisely understand the nature of the lasso and ridge regression solutions

• Here is a (far too quick) refresher/introduction to basic convex analysis and convex optimiza-
tion. Recall that a set C ⊆ Rn is called convex if for any x, y ∈ C and t ∈ [0, 1], we have

tx+ (1− t)y ∈ C,

i.e., the line segment joining x, y lies entirely in C. A function f : Rn → R is called convex if
its domain dom(f) is convex, and for any x, y ∈ dom(f) and t ∈ [0, 1],

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y),

i.e., the function lies below the line segment joining its evaluations at x and y. A function is
called strictly convex if this same inequality holds strictly for x 6= y and t ∈ (0, 1)

• E.g., lines, rays, line segments, linear spaces, affine spaces, hyperplans, halfspaces, polyhedra,
norm balls are all convex sets

• E.g., affine functions aTx+ b are convex and concave, quadratic functions xTQx+ bTx+ c are
convex if Q � 0 and strictly convex if Q � 0, norms are convex

• Formally, an optimization problem is of the form

min
x∈D

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Here D = dom(f) ∩⋂mi=1 dom(hi) ∩
⋂r
j=1 dom(`j) is the common domain of all functions. A

convex optimization problem is an optimization problem in which all functions f, h1, . . . hm are
convex, and all functions `1, . . . `r are affine. (Think: why affine?) Hence, we can express it as

min
x∈D

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

Ax = b

• Why is a convex optimization problem so special? The short answer: because any local min-
imizer is a global minimizer. To see this, suppose that x is feasible for the convex problem
formulation above and there exists some R > 0 such that

f(x) ≤ f(y) for all feasible y with ‖x− y‖2 ≤ R.

Such a point x is called a local minimizer. For the sake of contradiction, suppose that x was
not a global minimizer, i.e., there exists some feasible z such that f(z) < f(x). By convexity
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of the constraints (and the domain D), the point tz + (1 − t)x is feasible for any 0 ≤ t ≤ 1.
Furthermore, by convexity of f ,

f
(
tz + (1− t)x

)
≤ tf(z) + (1− t)f(x) < f(x)

for any 0 < t < 1. Lastly, we can choose t > 0 small enough so that ‖x− (tz + (1− t)x)‖2 =
t‖x− z‖2 ≤ R, and we obtain a contradiction

• Algorithmically, this is a very useful property, because it means if we keep “going downhill”,
i.e., reducing the achieved criterion value, and we stop when we can’t do so anymore, then
we’ve hit the global solution

• Convex optimization problems are also special because they come with a beautiful theory of
beautiful convex duality and optimality, which gives us a way of understanding the solutions.
We won’t have time to cover any of this, but we’ll mention what subgradient optimality looks
like for the lasso

• Just based on the definitions, it is not hard to see that (5), (6), (8), (9) are convex problems,
but (4), (7) are not. In fact, the latter two problems are known to be NP-hard, so they are in
a sense even the worst kind of nonconvex problem

2.4 Some theoretical backing for subset selection

• Despite its computational intractability, best subset selection has some attractive risk prop-
erties. A classic result is due to Foster & George (1994), on the in-sample risk of best subset
selection in penalized form (7), which we will paraphrase here. First, we raise a very simple
point: if A denotes the support (also called the active set) of the subset selection solution β̂
in (7)—meaning that β̂j = 0 for all j /∈ A, and denoted A = supp(β̂)—then we have

β̂A = (XT
AXA)−1XT

Ay,

β̂−A = 0.
(10)

Here and throughout we write XA for the columns of matrix X in a set A, and xA for the
components of a vector x in A. We will also use X−A and x−A for the columns or components
not in A. The observation in (10) follows from the fact that, given the support set A, the `0
penalty term in the subset selection criterion doesn’t depend on the actual magnitudes of the
coefficients (it contributes a constant factor), so the problem reduces to least squares

• Now, consider a standard linear model as in (2), with X fixed, and ε ∼ N(0, σ2I). Suppose
that the underlying coefficients have support S = supp(β0), and s0 = |S|. Then, the estimator
given by least squares on S, i.e.,

β̂oracle
S = (XT

SXS)−1XT
S y,

β̂oracle
−S = 0.

is is called oracle estimator, and as we know from our previous calculations, has in-sample risk

1

n
‖Xβ̂oracle −Xβ0‖22 = σ2 s0

n

• Foster & George (1994) consider this setup, and compare the risk of the best subset selection
estimator β̂ in (7) to the oracle risk of σ2s0/n. They show that, if we choose λ � σ2 log p, then
the best subset selection estimator satisfies

E‖Xβ̂ −Xβ0‖22/n
σ2s0/n

≤ 4 log p+ 2 + o(1), (11)
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as n, p → ∞. This holds without any conditions on the predictor matrix X. Moreover, they
prove the lower bound

inf
β̂

sup
X,β0

E‖Xβ̂ −Xβ0‖22/n
σ2s0/n

≥ 2 log p− o(log p),

where the infimum is over all estimators β̂, and the supremum is over all predictor matrices
X and underlying coefficients with ‖β0‖0 = s0. Hence, in terms of rate, best subset selection
achieves the optimal risk inflation over the oracle risk

• Returning to what was said above, the kicker is that we can’t really compute the best subset
selection estimator for even moderately-sized problems. As we will in the following, the lasso
provides a similar risk inflation guarantee, though under considerably stronger assumptions

• Lastly, it is worth remarking that even if we could compute the subset selection estimator at
scale, it’s not at all clear that we would want to use this in place of the lasso. (Many people
assume that we would.) We must remind ourselves that theory provides us an understanding
of the performance of various estimators under typically idealized conditions, and it doesn’t
tell the complete story. It could be the case that the lack of shrinkage in the subset selection
coefficients ends up being harmful in practical situations, in a signal-to-noise regime, and yet
the lasso could still perform favorably in such settings

• Update. Some nice recent work in optimization (Bertsimas et al. 2016) shows that we can
cast best subset selection as a mixed integer quadratic program, and proposes to solve it (in
general this means approximately, though with a certified bound on the duality gap) with
an industry-standard mixed integer optimization package like Gurobi. If we have time, we’ll
discuss this at the end and make some comparisons between subset selection and the lasso

3 Basic properties and geometry of the lasso

3.1 Ridge regression and the elastic net

• A quick refresher: the ridge regression problem (9) is always strictly convex (assuming λ > 0),
due to the presense of the squared `2 penalty ‖β‖22. To be clear, this is true regardless of X,
and so the ridge regression solution is always well-defined, and is in fact given in closed-form
by β̂ = (XTX + 2λI)−1XT y

• In contrast, the lasso problem is not always strictly convex and hence by standard convexity
theory, it need not have a unique solution (more on this shortly). However, we can define a
modified probblem that it always strictly convex, via the elastic net (Zou & Hastie 2005):

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 + δ‖β‖22, (12)

where now both λ, δ ≥ 0 are tuning parameters. Aside from guaranteeing uniqueness for all
X, the elastic net combines some of the desirable predictive properties of ridge regression with
the sparsity properties of the lasso

3.2 Nonuniqueness, sign patterns, and active sets

• A few basic observations on the lasso problem in (8):

1. There need not always be a unique solution β̂ in (8), because the criterion is not strictly
convex when XTX is singular (which, e.g., happens when p > n).
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2. There is however always a unique fitted value Xβ̂ in (8), because the squared error loss
is strictly convex in Xβ.

The first observation is worrisome; of course, it would be very bad if we encountered the same
problem with interpretation that we did in ordinary least squares. We will see shortly that
there is really nothing to worry about. The second observation is standard (it is also true in
least squares), but will be helpful

• Now we turn to subgradient optimality (sometimes called the KKT conditions) for the lasso
problem in (8). They tell us that any lasso solution β̂ must satisfy

XT (y −Xβ̂) = λs, (13)

where s ∈ ∂‖β̂‖1, a subgradient of the `1 norm evaluated at β̂. Precisely, this means that

sj ∈





{+1} β̂j > 0

{−1} β̂j < 0

[−1, 1] β̂j = 0,

j = 1, . . . , p (14)

• From (13) we can read off a straightforward but important fact: even though the solution β̂
may not be uniquely determined, the optimal subgradient s is a function of the unique fitted
value Xβ̂ (assuming λ > 0), and hence is itself unique

• Now from (14), note that the uniqueness of s implies that any two lasso solutions must have
the same signs on the overlap of their supports. That is, it cannot happen that we find two
different lasso solutions β̂ and β̃ with β̂j > 0 but β̃j < 0 for some j, and hence we have no
problem interpretating the signs of components of lasso solutions

• Aside from possible interpretation issues, recall, nonuniqueness also means that actual (out-
of-sample) prediction is not well-defined, which is also a big deal. In the next subsection, we’ll
see we also don’t have to worry about this, for almost all lasso problems we might consider

• Before this, let’s discuss active sets of lasso solutions. Define the equicorrelation set

E =
{
j ∈ {1, . . . , p} : |XT

j (y −Xβ̂)| = λ
}
.

This is the set of variables that achieves the maximum absolute inner product (or, correlation
for standard predictors) with the lasso residual vector. Assuming λ > 0, this is the same as

E =
{
j ∈ {1, . . . , p} : |sj | = 1

}
.

This is a uniquely determined set (since Xβ̂, s are unique)

• Importantly, the set E contains the active set A = supp(β̂) of any lasso solution β̂, because
for j /∈ E, we have |sj | < 1, which implies that β̂j = 0

• Also importantly, the set E is the active set of a particular lasso solution, namely, the lasso
solution with the smallest `2 norm, call it β̂lasso,`2 . The lasso solution with the smallest `2
norm is (perhaps not surprisingly) on the limiting end of the elastic net solution path (12) as
the ridge penalty parameter goes to 0:

β̂lasso,`2 = lim
δ→0

{
argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 + δ‖β‖22

}
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3.3 Uniqueness and saturation

• Fortunately, the lasso solution in (8) is unique under very general conditions, specifically it is
unique if X has columns in general position (Tibshirani 2013). We say that X1, . . . , Xp ∈ Rn
are in general position provided that for any k < min{n, p}, indices i1, . . . , ik+1 ∈ {1, . . . p},
and signs σ1, . . . , σk+1 ∈ {−1,+1}, the affine span of σ1Xi1 , . . . , σk+1Xik+1

does not contain
any element of {±Xi : i 6= i1, . . . , ik+1}. This is equivalent to the following statement: no k-
dimensional subspace L ⊆ Rn, for k < min{n, p}, contains more that k+1 points of {±X1, . . .±
Xp}, excluding antipodal pairs (i.e., +Xi and −Xi)

• This is a very weak condition on X, and it can hold no matter the (relative) sizes of n and
p. It is straightforward to show that if the elements Xij , i = 1, . . . , n, j = 1, . . . , p have any
continuous joint distribution (i.e., that is absolutely continuous with respect to the Lebesgue
measure on Rnp), then X has columns in general position almost surely

• Moreover, general position of X implies the following fact: for any λ > 0, the submatrix XA

of active predictor variables always has full column rank. This means that |A| ≤ min{n, p}, or
in words, no matter where we are on the regularization path, the (unique) lasso solution never
has more than min{n, p} nonzero components

• The above property is called saturation of the lasso solution, which is not necessarily a good
property. If we have, e.g., 100,000 continuously distributed variables and 100 samples, then we
will never form a working linear model with more than 100 selected variables with the lasso

• Note that the elastic net (12) was proposed as a means of overcoming this saturation problem
(it does not have the same property); it also has a grouping effect, where it tends to pull in
variables with similar effects into the active set together

3.4 Form of solutions

• Let’s assume henceforth that the columns of X are in general position (and we are looking at
a nontrivial end of the path, with λ > 0), so the lasso solution β̂ is unique. Let A = supp(β̂)
be the lasso active set, and let sA = sign(β̂A) be the signs of active coefficients. From the
subgradient conditions (13), (14), we know that

XT
A(y −XAβ̂A) = λsA,

and solving for β̂A gives

β̂A = (XT
AXA)−1(XT

Ay − λsA),

β̂−A = 0
(15)

(where recall we know that XT
AXA is invertible because X has columns in general position).

We see that the active coefficients β̂A are given by taking the least squares coefficients on XA,
(XT

AXA)−1XT
Ay, and shrinking them by an amount λ(XT

AXA)−1sA. Contrast this to, e.g., the
subset selection solution in (10), where there is no such shrinkage

• Now, how about this so-called shrinkage term (XT
AXA)−1XT

Ay? Does it always act by moving
each one of the least squares coefficients (XT

AXA)−1XT
Ay towards zero? Indeed, this is not

always the case, and one can find empirical examples where a lasso coefficient is actually larger
(in magnitude) than the corresponding least squares coefficient on the active set. Of course,
we also know that this is due to the correlations between active variables, because when X is
orthogonal, as we’ve already seen, this never happens
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• On the other hand, it is always the case that the lasso solution has a strictly smaller `1 norm
than the least squares solution on the active set, and in this sense, we are (perhaps) justified
in always referring to (XT

AXA)−1XT
Ay as a shrinkage term. We can see this as

‖β̂‖1 = sTA(XT
AXA)−1XT

Ay − λsTA(XT
AXA)−1sA < ‖(XT

AXA)−1XT
Ay‖1.

The first term is less than or equal to ‖(XT
AXA)−1XT

Ay‖1, and the term we are subtracting is
strictly negative (because (XT

AXA)−1 is positive definite)

3.5 Geometry of solutions

• One undesirable feature of the best subset selection solution (10) is the fact that it behaves
discontinuously with y. As we change y, the active set A must change at some point, and the
coefficients will jump discontinuously, because we are just doing least squares onto the active
set

• So, does the same thing happen with the lasso solution (15)? The answer it not immediately
clear. Again, as we change y, the active set A must change at some point; but if the shrinkage
term were defined “just right”, then perhaps the coefficients of variables to leave the active set
would gracefully and continously drop to zero, and coefficients of variables to enter the active
set would continuously move form zero. This would make whole the lasso solution continuous

• Fortuitously, this is indeed the case, and the lasso solution β̂ is continuous as a function of y.
It might seem a daunting task to prove this, but a certain perspective using convex geometry
provides a very simple proof. The geometric perspective in fact proves that the lasso fit Xβ̂ is
nonexpansive in y, i.e., 1-Lipschitz continuous, which is a very strong form of continuity

• Define the convex polyhedron C = {u : ‖XTu‖∞ ≤ λ} ⊆ Rn. Some simple manipulations of
the KKT conditions show that the lasso fit is given by

Xβ̂ = (I − PC)(y),

the residual from projecting y onto C. A picture to show this (just look at the left panel for
now) is given in Figure 2

• The projection onto any convex set is nonexpansive, i.e., ‖PC(y) − PC(y′)‖2 ≤ ‖y − y′‖2 for
any y, y′. This should be visually clear from the picture. Actually, the same is true with the
residual map: I − PC is also nonexpansive, and hence the lasso fit is 1-Lipschitz continuous

• Viewing the lasso fit as the residual from projection onto a convex polyhedron is actually an
even more fruitful perspective. Write this polyhedron as

C = (XT )−1{v : ‖v‖∞ ≤ λ},

where (XT )−1 denotes the preimage operator under the linear map XT . The set {v : ‖v‖∞ ≤
λ} is a hypercube in Rp. Every face of this cube corresponds to a subset A ⊆ {1, . . . p} of
dimensions (that achieve the maximum value |λ|) and signs sA ∈ {−1, 1}|A| (that tell which
side of the cube the face will lie on, for each dimension). Now, the faces of C are just faces of
{v : ‖v‖∞ ≤ λ} run through the (linear) preimage transformation, so each face of C can also
indexed by a set A ⊆ {1, . . . p} and signs sA ∈ {−1, 1}|A|. The picture in Figure 2 attempts to
convey this relationship with the colored black face in each of the panels

• Now imagine projecting y onto C; it will land on some face. We have just argued that this
face corresponds to a set A and signs sA. One can show that this set A is exactly the active
set of the lasso solution at y, and sA are exactly the active signs. The size of the active set
|A| is the co-dimension of the face
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y

C = {u : ‖XT u‖∞ ≤ λ}

Xβ̂

0
0

û

{v : ‖v‖∞ ≤ λ}

A, sA

(XT )−1

Rn Rp

1

Figure 2: A geometric picture of the lasso solution. The left panel shows the polyhedron underlying
all lasso fits, where each face corresponds to a particular combination of active set A and signs s;
the right panel displays the “inverse” polyhedron, where the dual solutions live

• Looking at the picture: we can that see that as we wiggle y around, it will project to the same
face. From the correspondence between faces and active set and signs of lasso solutions, this
means that A, sA do not change as we perturb y, i.e., they are locally constant

• But this isn’t true for all points y, e.g., if y lies on one of the rays emanating from the lower
right corner of the polyhedron in the picture, then we can see that small perturbations of y do
actually change the face that it projects to, which invariably changes the active set and signs
of the lasso solution. However, this is somewhat of an exceptional case, in that such points
can be form a of Lebesgue measure zero, and therefore we can assure ourselves that the active
set and signs A, sA are locally constant for almost every y

3.6 Piecewise linear solution path

• From the lasso KKT conditions (13), (14), it is possible to compute the lasso solution in (8) as
a function of λ, which we will write as β̂(λ), for all values of the tuning parameter λ ∈ [0,∞].
This is called the regularization path or solution path of the problem (8)

• Path algorithms like the one we will describe below are not always possible; the reason that
this ends up being feasible for the lasso problem (8) is that the solution path β̂(λ), λ ∈ [0,∞]
turns out to be a piecewise linear, continuous function of λ. Hence, we only need to compute
and store the knots in this path, which we will denote by λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0, and the
lasso solution at these knots. From this information, we can then compute the lasso solution
at any value of λ by linear interpolation

• The knots λ1 ≥ . . . ≥ λr in the solution path correspond to λ values at which the active set
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A(λ) = supp(β̂(λ)) changes. As we decrease λ from ∞ to 0, the knots typically correspond to
the point at which a variable enters the active set; this connects the lasso to an incremental
variable selection procedure like forward stepwise regression. Interestingly though, as we de-
crease λ, a knot in the lasso path can also correspond to the point at which a variables leaves
the active set. See Figure 3
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Figure 3: An example of the lasso path. Each colored line denotes a component of the lasso solution
β̂j(λ), j = 1, . . . , p as a function of λ. The gray dotted vertical lines mark the knots λ1 ≥ λ2 ≥ . . .

• The lasso solution path was described by Osborne et al. (2000a,b), Efron et al. (2004). Like
the construction of all other solution paths that followed these seminal works, the lasso path
is essentially given by an iterative or inductive verification of the KKT conditions; if we can
maintain that the KKT conditions holds as we decrease λ, then we know we have a solution.
The trick is to start at a value of λ at which the solution is trivial; for the lasso, this is λ =∞,
at which case we know the solution must be β̂(∞) = 0

• Why would the path be piecewise linear? The construction of the path from the KKT con-
ditions is actually rather technical (not difficult conceptually, but somewhat tedious), and
doesn’t shed insight onto this matter. But we can actually see it clearly from the projection
picture in Figure 2

As λ decreases from ∞ to 0, we are shrinking (by a multiplicative factor λ) the polyhedron
onto which y is projected; let’s write Cλ = {u : ‖XTu‖∞ ≤ λ} = λC1 to make this clear. Now
suppose that y projects onto the relative interior of a certain face F of Cλ, corresponding to
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an active set A and signs sA. As λ decreases, the point on the boundary of Cλ onto which y
projects, call it û(λ) = PCλ(y), will move along the face F , and change linearly in λ (because
we are equivalently just tracking the projection of y onto an affine space that is being scaled
by λ). Thus, the lasso fit Xβ̂(λ) = y − û(λ) will also behave linearly in λ

Eventually, as we continue to decrease λ, the projected point û(λ) will move to the relative
boundary of the face F ; then, decreasing λ further, it will lie on a different, neighboring face
F ′. This face will correspond to an active set A′ and signs sA′ that (each) differ by only one
element to A and sA, respectively. It will then move linearly across F ′, and so on

• Now we will walk through the technical derivation of the lasso path, starting at λ = ∞ and
β̂(∞) = 0, as indicated above. Consider decreasing λ from ∞, and continuing to set β̂(λ) = 0
as the lasso solution. The KKT conditions (13) read

XT y = λs,

where s is a subgradient of the `1 norm evaluated at 0, i.e., sj ∈ [−1, 1] for every j = 1, . . . , p.
For large enough values of λ, this is satisfied, as we can choose s = XT y/λ. But this ceases to
be a valid subgradient if we decrease λ past the point at which λ = |XT

j y| for some variable
j = 1, . . . , p. In short, β̂(λ) = 0 is the lasso solution for all λ ≥ λ1, where

λ1 = max
j=1,...,p

|XT
j y|. (16)

What happens next? As we decrease λ from λ1, we know that we’re going to have to change
β̂(λ) from 0 so that the KKT conditions remain satisfied. Let j1 denote the variable that
achieves the maximum in (16). Since the subgradient was |sj1 | = 1 at λ = λ1, we see that we
are “allowed” to make β̂j1(λ) nonzero. Consider setting

β̂j1(λ) = (XT
j1Xj1)−1(XT

j1y − λsj1)

β̂j(λ) = 0, for all j 6= j1,
(17)

as λ decreases from λ1, where sj1 = sign(XT
j1
y). Note that this makes β̂(λ) a piecewise linear

and continuous function of λ, so far. The KKT conditions are then

XT
j1

(
y −Xj1(XT

j1Xj1)−1(XT
j1y − λsj1)

)
= λsj1 ,

which can be checked with simple algebra, and

∣∣∣XT
j

(
y −Xj1(XT

j1Xj1)−1(XT
j1y − λsj1)

)∣∣∣ ≤ λ,

for all j 6= j1. Recall that the above held with strict inequality at λ = λ1 for all j 6= j1, and
by continuity of the constructed solution β̂(λ), it should continue to hold as we decrease λ for
at least a little while. In fact, it will hold until one of the piecewise linear paths

XT
j (y −Xj1(XT

j1Xj1)−1(XT
j1y − λsj1)), j 6= j1

becomes equal to ±λ, at which point we have to modify the solution because otherwise the
implicit subgradient

sj =
XT
j (y −Xj1(XT

j1
Xj1)−1(XT

j1
y − λsj1))

λ

will cease to be in [−1, 1]. It helps to draw yourself a picture of this
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Thanks to linearity, we can compute the critical “hitting time” explicitly; a short calculation
shows that, the lasso solution continues to be given by (17) for all λ1 ≥ λ ≥ λ2, where

λ2 = max+

j 6=j1, sj∈{−1,1}

XT
j (I −Xj1(XT

j1
Xj1)−1Xj1)y

sj −XT
j Xj1(XT

j1
Xj1)−1sj1

, (18)

and max+ denotes the maximum over all of its arguments that are < λ1

To keep going: let j2, s2 achieve the maximum in (18). Let A = {j1, j2}, sA = (sj1 , sj2), and
consider setting

β̂A(λ) = (XT
AXA)−1(XT

Ay − λsA)

β̂−A(λ) = 0,
(19)

as λ decreases from λ2. Again, we can verify the KKT conditions for a stretch of decreasing
λ, but will have to stop when one of

XT
j (y −XA(XT

AXA)−1(XT
Ay − λsA), j /∈ A

becomes equal to ±λ. By linearity, we can compute this next “hitting time” explicitly, just
as before. Furthermore, though, we will have to check whether the active components of the
computed solution in (19) are going to cross through zero, because past such a point, sA will
no longer be a proper subgradient over the active components. We can again compute this
next “crossing time” explicitly, due to linearity. Therefore, we maintain that (19) is the lasso
solution for all λ2 ≥ λ ≥ λ3, where λ3 is the maximum of the next hitting time and the next
crossing time. For convenience, the lasso path algorithm is summarized below

Algorithm 1 (Lasso path algorithm).

Given y and X.

– Start with the iteration counter k = 0, regularization parameter λ0 =∞, active set A = ∅,
and active signs sA = ∅

– While λk > 0:

1. Compute the lasso solution as λ decreases from λk by

β̂A(λ) = (XT
AXA)−1(XT

Ay − λsA)

β̂−A(λ) = 0

2. Compute the next hitting time (where max+ denotes the maximum of its arguments
< λk),

λhitk+1 = max+

j /∈A, sj∈{−1,1}

XT
j (I −XA(XT

AXA)−1XT
A)y

sj −XT
j XA(XT

AXA)−1sA

3. Compute the next crossing time (where max+ denotes the maximum of its arguments
< λk),

λcrossk+1 = max+

j∈A
[(XT

AXA)−1XT
Ay]j

[(XT
AXA)−1sA]j

,

4. Decrease λ until λk+1, defined by

λk+1 = max{λhitk+1, λ
cross
k+1 }

5. If λhitk+1 > λcrossk+1 , then add the hitting variable to A and its sign to sA; otherwise,
remove the crossing variable from A and its sign from sA. Update k = k + 1
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• As we decrease λ from a knot λk, we can rewrite the lasso coefficient update in Step 1 as

β̂A(λ) = β̂A(λk) + (λk − λ)(XT
AXA)−1sA,

β̂−A(λ) = 0.
(20)

We can see that we are moving the active coefficients in the direction (λk − λ)(XT
AXA)−1sA

for decreasing λ. In other words, the lasso fitted values proceed as

Xβ̂(λ) = Xβ̂(λk) + (λk − λ)XA(XT
AXA)−1sA,

for decreasing λ. Efron et al. (2004) call XA(XT
AXA)−1sA the equiangular direction, because

this direction, in Rn, takes an equal angle with all Xj ∈ Rn, j ∈ A

• For this reason, the lasso path algorithm in Algorithm 1 is also often referred to as the least
angle regression path algorithm in “lasso mode”, though we have not mentioned this yet to
avoid confusion. Least angle regression is considered as another algorithm by itself, where we
skip Step 3 altogether. In words, Step 3 disallows any component path to cross through zero.
The left side of the plot in Figure 3 visualizes the distinction between least angle regression
and lasso estimates: the dotted black line displays the least angle regression component path,
crossing through zero, while the lasso component path remains at zero

• Lastly, an alternative expression for the coefficient update in (20) (the update in Step 1) is

β̂A(λ) = β̂A(λk) +
λk − λ
λk

(XT
AXA)−1XT

Ar(λk),

β̂−A(λ) = 0,

(21)

where r(λk) = y −XAβ̂A(λk) is the residual (from the fitted lasso model) at λk. This follows
because, recall, λksA are simply the inner products of the active variables with the residual at
λk, i.e., λksA = XT

A(y −XAβ̂A(λk)). In words, we can see that the update for the active lasso
coefficients in (21) is in the direction of the least squares coefficients of the residual r(λk) on
the active variables XA

4 Theoretical analysis of the lasso

4.1 Slow rates

• Recently, there has been an enormous amount theoretical work analyzing the performance of
the lasso. Some references (warning: a highly incomplete list) are Greenshtein & Ritov (2004),
Fuchs (2005), Donoho (2006), Candes & Tao (2006), Meinshausen & Buhlmann (2006), Zhao
& Yu (2006), Candes & Plan (2009), Wainwright (2009); a helpful text for these kind of results
is Buhlmann & van de Geer (2011)

• We begin by stating what are called slow rates for the lasso estimator. Most of the proofs are
simple enough that they are given below. These results don’t place any real assumptions on
the predictor matrix X, but deliver slow(er) rates for the risk of the lasso estimator than what
we would get under more assumptions, hence their name

• We will assume the standard linear model (2), with X fixed, and ε ∼ N(0, σ2). We will also
assume that ‖Xj‖22 ≤ n, for j = 1, . . . , p. That the errors are Gaussian can be easily relaxed
to sub-Gaussianity. That X is fixed (or equivalently, it is random, but we condition on it and
assume it is independent of ε) is more difficult to relax, but can be done as in Greenshtein &
Ritov (2004). This makes the proofs more complicated, so we don’t consider it here
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• Bound form. The lasso estimator in bound form (5) is particularly easy to analyze. Suppose
that we choose t = ‖β0‖1 as the tuning parameter. Then, simply by virtue of optimality of
the solution β̂ in (5), we find that

‖y −Xβ̂‖22 ≤ ‖y −Xβ0‖22,

or, expanding and rearranging,

‖Xβ̂ −Xβ0‖22 ≤ 2〈ε,Xβ̂ −Xβ0〉.

Here we denote 〈a, b〉 = aT b. The above is sometimes called the basic inequality (for the lasso
in bound form). Now, rearranging the inner product, using Holder’s inequality, and recalling
the choice of bound parameter:

‖Xβ̂ −Xβ0‖22 ≤ 2〈XT ε, β̂ − β0〉 ≤ 4‖β0‖1‖XT ε‖∞.

Notice that ‖XT ε‖∞ = maxj=1,...,p |XT
j ε| is a maximum of p Gaussians, each with mean zero

and variance upper bounded by σ2n. By a standard maximal inequality for Gaussians, for any
δ > 0,

max
j=1,...,p

|XT
j ε| ≤ σ

√
2n log(ep/δ),

with probability at least 1− δ. Plugging this to the second-to-last display and dividing by n,
we get the finite-sample result for the lasso estimator

1

n
‖Xβ̂ −Xβ0‖22 ≤ 4σ‖β0‖1

√
2 log(ep/δ)

n
, (22)

with probability at least 1− δ

• The high-probability result (22) implies an in-sample risk bound of

1

n
E‖Xβ̂ −Xβ0‖22 . ‖β0‖1

√
log p

n
.

Compare to this with the risk bound (11) for best subset selection, which is on the (optimal)
order of s0 log p/n when β0 has s0 nonzero components. If each of the nonzero components
here has constant magnitude, then above risk bound for the lasso estimator is on the order of
s0
√

log p/n, which is much slower

• Bound form, predictive risk. Instead of in-sample risk, we might also be interested in out-
of-sample risk, as after all that reflects actual (out-of-sample) predictions. In least squares,
recall, we saw that out-of-sample risk was generally higher than in-sample risk. The same is
true for the lasso

Chatterjee (2013) gives a nice, simple analysis of out-of-sample risk for the lasso. He assumes
that x0, xi, i = 1, . . . , n are i.i.d. from an arbitrary distribution supported on a compact set
in Rp, and shows that the lasso estimator in bound form (5) with t = ‖β0‖1 has out-of-sample
risk satisfying

E(xT0 β̂ − xT0 β)2 . ‖β0‖21
√

log p

n
.

The proof is not much more complicated than the above, for the in-sample risk, and reduces
to a clever application of Hoeffding’s inequality, though we omit it for brevity. Note here the
dependence on ‖β0‖21, rather than ‖β0‖1 as in the in-sample risk
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• Penalized form. The analysis of the lasso estimator in penalized form (8) is similar to that
in bound form, but only slightly more complicated. From the exact same steps leading up to
the basic inequality for the bound for estimator, we have the basic inequality for the penalized
form lasso estimator

‖Xβ̂ −Xβ0‖22 ≤ 2〈XT ε, β̂ − β0〉+ 2λ(‖β0‖1 − ‖β̂‖1).

Now by Holder’s inequality again, and the maximal inequality for Gaussians, we have for any
δ > 0,

‖Xβ̂ −Xβ0‖22 ≤ 2σ
√

2n log(ep/δ)‖β̂ − β0‖1 + 2λ(‖β0‖1 − ‖β̂‖1),

and if we choose λ ≥ σ
√

2n log(ep/δ), then by the triangle inequality,

‖Xβ̂ −Xβ0‖22 ≤ 2λ‖β̂ − β0‖1 + 2λ(‖β0‖1 − ‖β̂‖1) ≤ 4λ‖β0‖1,
To recap, for any δ > 0 and choice of tuning parameter λ ≥ σ

√
2n log(ep/δ), we have shown

the finite-sample bound
1

n
‖Xβ̂ −Xβ0‖22 ≤

4λ‖β0‖1
n

,

and in particular for λ = σ
√

2n log(ep/δ),

1

n
‖Xβ̂ −Xβ0‖22 ≤ 4σ‖β0‖1

√
2n log(ep/δ)

n
.

This is the same bound as we established for the lasso estimator in bound form

• Oracle inequality. If we don’t want to assume linearity of the mean in (2), then we can still
derive an oracle inequality that characterizes the risk of the lasso estimator in excess of the
risk of the best linear predictor. For this part only, assume the more general model

y = µ(X) + ε,

with an arbitrary mean function µ(X), and normal errors ε ∼ N(0, σ2). We will analyze the
bound form lasso estimator (5) for simplicity. By optimality of β̂, for any other β̃ feasible for
the lasso problem in (5), it holds that

〈XT (y −Xβ̂), β̃ − β̂〉 ≤ 0.

Rearranging gives
〈µ(X)−Xβ̂,Xβ̃ −Xβ̂〉 ≤ 〈XT ε, β̂ − β̃〉.

Now using the polarization identity ‖a‖22 + ‖b‖22 − ‖a− b‖22 = 2〈a, b〉,
‖Xβ̂ − µ(X)‖22 + ‖Xβ̂ −Xβ̃‖22 ≤ ‖Xβ̃ − µ(X)‖22 + 2〈XT ε, β̂ − β̃〉,

and from the exact same arguments as before, it holds that

1

n
‖Xβ̂ − µ(X)‖22 +

1

n
‖Xβ̂ −Xβ̃‖22 ≤

1

n
‖Xβ̃ − µ(X)‖22 + 4σt

√
2 log(ep/δ)

n
,

with probability at least 1− δ. This holds simultaneously over all β̃ with ‖β̃‖1 ≤ t. Thus, we
may write, with probability 1− δ,

1

n
‖Xβ̂ − µ(X)‖22 ≤

{
inf
‖β̃‖1≤t

1

n
‖Xβ̃ − µ(X)‖22

}
+ 4σt

√
2 log(ep/δ)

n
.

Also if we write Xβ̃best as the best linear that predictor of `1 at most t, achieving the infimum
on the right-hand side (which we know exists, as we are minimizing a continuous function over
a compact set), then

1

n
‖Xβ̂ −Xβ̃best‖22 ≤ 4σt

√
2 log(ep/δ)

n
,

with probability at least 1− δ
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4.2 Fast rates

• Now we cover so-called fast rates for the lasso, which assume more about the predictors X—
specifically, assume some kind of low-correlation assumption—and then provide a risk bound
on the order of s0 log p/n, just as we saw for subset selection. These strong assumptions also
allow us to “invert” an error bound on the fitted values into one on the coefficients

• As before, assume the linear model in (2), with X fixed, such that ‖Xj‖22 ≤ n, j = 1, . . . , p,
and ε ∼ N(0, σ2). Denote the underlying support set by S = supp(β0), with size s0 = |S|

• There are many flavors of fast rates, and the conditions required are all very closely related.
van de Geer & Buhlmann (2009) provides a nice review and discussion. Here we just discuss
two such results, for simplicity

• Compatibility result. Assume that X satisfies the compatibility condition with respect to
the true support set S, i.e., for some compatibility constant φ0 > 0,

1

n
‖Xv‖22 ≥

φ20
s0
‖vS‖21 for all v ∈ Rp such that ‖v−S‖1 ≤ 3‖vS‖1. (23)

While this may look like an odd condition, we will see it being useful in the proof below, and
we will also have some help interpreting it when we discuss the restricted eigenvalue condition
shortly. Roughly, it means the (truly active) predictors can’t be too correlated

Recall from our previous analysis for the lasso estimator in penalized form (8), we showed on
an event Eδ of probability at least 1− δ,

‖Xβ̂ −Xβ0‖22 ≤ 2σ
√

2n log(ep/δ)‖β̂ − β0‖1 + 2λ(‖β0‖1 − ‖β̂‖1).

Choosing λ large enough and applying the triangle inequality then gave us the slow rate we
derived before. Now we choose λ just slightly larger (by a factor of 2): λ ≥ 2σ

√
2n log(ep/δ).

The remainder of the analysis will be performed on the event Eδ and we will no longer make
this explicit until the very end. Then

‖Xβ̂ −Xβ0‖22 ≤ λ‖β̂ − β0‖1 + 2λ(‖β0‖1 − ‖β̂‖1)

≤ λ‖β̂S − β0,S‖1 + λ‖β̂−S‖1 + 2λ(‖β0‖1 − ‖β̂‖1)

≤ λ‖β̂S − β0,S‖1 + λ‖β̂−S‖1 + 2λ(‖β0,S − β̂S‖1 − ‖β̂−S‖1)

= 3λ‖β̂S − β0,S‖1 − λ‖β̂−S‖1,

where the two inequalities both followed from the triangle inequality, one application for each
of the two terms, and we have used that β̂0,−S = 0. As ‖Xβ̂ −Xβ0‖22 ≥ 0, we have shown

‖β̂−S − β̂0,−S‖1 ≤ 3‖β̂S − β0,S‖1,

and thus we may apply the compatibility condition (23) to the vector v = β̂ − β0. This gives
us two bounds: one on the fitted values, and the other on the coefficients. Both start with the
key inequality (from the second-to-last display)

‖Xβ̂ −Xβ0‖22 ≤ 3λ‖β̂S − β0,S‖1. (24)

For the fitted values, we upper bound the right-hand side of the key inequality (24),

‖Xβ̂ −Xβ0‖22 ≤ 3λ

√
s0
nφ20
‖Xβ̂ −Xβ0‖2,

19



or dividing through both sides by ‖Xβ̂ −Xβ0‖2, then squaring both sides, and dividing by n,

1

n
‖Xβ̂ −Xβ0‖22 ≤

9s0λ
2

n2φ20
.

Plugging in λ = 2σ
√

2n log(ep/δ), we have shown that

1

n
‖Xβ̂ −Xβ0‖22 ≤

72σ2s0 log(ep/δ)

nφ20
, (25)

with probability at least 1 − δ. Notice the similarity between (25) and (11): both provide us
in-sample risk bounds on the order of s0 log p/n, but the bound for the lasso requires a strong
compability assumption on the predictor matrix X, which roughly means the predictors can’t
be too correlated

For the coefficients, we lower bound the left-hand side of the key inequality (24),

nφ20
s0
‖β̂S − β0,S‖21 ≤ 3λ‖β̂S − β0,S‖1,

so dividing through both sides by ‖β̂S − β0,S‖1, and recalling ‖β̂−S‖1 ≤ 3‖β̂S − β0,S‖1, which
implies by the triangle inequality that ‖β̂ − β0‖1 ≤ 4‖β̂S − β0,S‖1,

‖β̂ − β0‖1 ≤
12s0λ

nφ20
.

Plugging in λ = 2σ
√

2n log(ep/δ), we have shown that

‖β̂ − β0‖1 ≤
24σs0
φ20

√
2 log(ep/δ)

n
, (26)

with probability at least 1− δ. This is a error bound on the order of s0
√

log p/n for the lasso
coefficients (in `1 norm)

• Restricted eigenvalue result. Instead of compatibility, we may assume that X satisfies the
restricted eigenvalue condition with constant φ0 > 0, i.e.,

1

n
‖Xv‖22 ≥ φ20‖v‖22 for all subsets J ⊆ {1, . . . , p} such that |J | = s0

and all v ∈ Rp such that ‖vJc‖1 ≤ 3‖vJ‖1. (27)

This produces essentially the same results as in (25), (26), but additionally, in the `2 norm,

‖β̂ − β0‖22 .
s0 log p

nφ20

with probability tending to 1

Note the similarity between (27) and the compatibility condition (23). The former is actually
stronger, i.e., it implies the latter, because ‖β‖22 ≥ ‖βJ‖22 ≥ ‖βJ‖21/s0. We may interpret the
restricted eigenvalue condition roughly as follows: the requirement (1/n)‖Xv‖22 ≥ φ20‖v‖22 for
all v ∈ Rn would be a lower bound of φ20 on the smallest eigenvalue of (1/n)XTX; we don’t
require this (as this would of course mean that X was full column rank, and couldn’t happen
when p > n), but instead that require that the same inequality hold for v that are “mostly”
supported on small subsets J of variables, with |J | = s0
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4.3 Support recovery

• Here we discuss results on support recovery of the lasso estimator. There are a few versions
of support recovery results and again Buhlmann & van de Geer (2011) is a good place to look
for a thorough coverage. Here we describe a result due to Wainwright (2009), who introduced
a proof technique called the primal-dual witness method

• Again we assume a standard linear model (2), with X fixed, subject to the scaling ‖Xj‖22 ≤ n,
for j = 1, . . . , p, and ε ∼ N(0, σ2). Denote by S = supp(β0) the true support set, and s0 = |S|.
Assume that XS has full column rank

• We aim to show that, at some value of λ, the lasso solution β̂ in (8) has an active set that
exactly equals the true support set,

A = supp(β̂) = S,

with high probability. We actually aim to show that the signs also match,

sign(β̂S) = sign(β0,S),

with high probability. The primal-dual witness method basically plugs in the true support S
into the KKT conditions for the lasso (13), (14), and checks when they can be verified

• We start by breaking up (13) into two blocks, over S and Sc. Suppose that supp(β̂) = S at a
solution β̂. Then the KKT conditions become

XT
S (y −XS β̂S) = λsS (28)

XT
−S(y −XS β̂S) = λs−S . (29)

Hence, if we can satisfy the two conditions (28), (29) with a proper subgradient s, such that

sS = sign(β0,S) and ‖s−S‖∞ = max
j /∈S
|sj | < 1,

then we have met our goal: we have recovered a (unique) lasso solution whose active set is S,
and whose active signs are sign(β0,S)

So, let’s solve for β̂S in the first block (28). Just as we did in the work on basic properties of
the lasso estimator, this yields

β̂S = (XT
SXS)−1

(
XT
S y − λsign(β0,S)

)
, (30)

where we have substituted sS = sign(β0,S). From (29), this implies that s−S must satisfy

s−S =
1

λ
XT
−S
(
I −XS(XT

SXS)−1XT
S

)
y +XT

−SXS(XT
SXS)−1sign(β0,S). (31)

To lay it out, for concreteness, the primal-dual witness method proceeds as follows:

1. Solve for the lasso solution over the S components, β̂S , as in (30), and set β̂−S = 0

2. Solve for the subgradient over the Sc components, s−S , as in (31)

3. Check that sign(β̂S) = sign(β0,S), and that ‖s−S‖∞ < 1. If these two checks pass, then
we have certified there is a (unique) lasso solution that exactly recovers the true support
and signs
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The success of the primal-dual witness method hinges on Step 3. We can plug in y = Xβ0 + ε,
and rewrite the required conditions, sign(β̂S) = sign(β0,S) and ‖s−S‖∞ < 1, as

sign(β0,j + ∆j) = sign(β0,j), where

∆j = eTj (XT
SXS)−1

(
XT
S ε− λsign(β0,S)

)
, for all j ∈ S, (32)

and ∥∥∥ 1

λ
XT
−S
(
I −XS(XT

SXS)−1XT
S

)
ε+XT

−SXS(XT
SXS)−1sign(β0,S)

∥∥∥
∞
< 1. (33)

As ε ∼ N(0, σ2I), we see that the two required conditions have been reduced to statements
about Gaussian random variables. The arguments we need to check these conditions actually
are quite simply, but we will need to make assumptions on X and β0. These are:

– Mutual incoherence: for some γ > 0, we have

‖(XT
SXS)−1XT

SXj‖1 ≤ 1− γ, for j /∈ S,

– Minimum eigenvalue: for some C > 0, we have

Λmin

(
1

n
XT
SXS

)
≥ C,

where Λmin(A) denotes the minimum eigenvalue of a matrix A

– Minimum signal:

β0,min = min
j∈S
|β0,j | ≥ λ‖(XT

SXS)−1‖∞ +
4γλ√
C
,

where ‖A‖∞ = maxi=1,...,m

∑q
j=1 |Aij | denotes the `∞ norm of an m× q matrix A

With these assumptions in place on X and β0, let’s first consider verifying (32), and examine
∆S , whose components ∆j , j ∈ S are as defined in (32). We have

‖∆S‖∞ ≤ ‖(XT
SXS)−1XT

S ε‖∞ + λ‖(XT
SXS)−1‖∞.

Note that w = (XT
SXS)−1XT

S ε is Gaussian with mean zero and covariance σ2(XT
SXS)−1, so

the variances of components of w are bounded by

σ2Λmax

(
(XT

SXS)−1
)
≤ σ2n

C
,

where we have used the minimum eigenvalue assumption. By a standard result on the maxi-
mum of Gaussians, for any δ > 0, it holds with probability at least 1− δ that

‖∆S‖∞ ≤
σ√
C

√
2n log (es0/δ) + λ‖(XT

SXS)−1‖∞

≤ β0,min +
γ√
C

(
σ

γ

√
2n log (es0/δ)− 4λ

)

︸ ︷︷ ︸
a

.

where in the second line we used the minimum signal condition. As long as a < 0, we can see
that the sign condition (32) is verified

Now, let’s consider verifying (33). Using the mutual incoherence condition, we have

∥∥∥ 1

λ
XT
−S
(
I −XS(XT

SXS)−1XT
S

)
ε+XT

−SXS(XT
SXS)−1sign(β0,S)

∥∥∥
∞
≤ ‖z‖∞ + (1− γ),
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where z = (1/λ)XT
−S(I −XS(XT

SXS)−1XT
S )ε = (1/λ)XT

−SPXS ε, with PXS the projection ma-
trix onto the column space of XS . Notice that z is Gaussian with mean zero and covariance
(σ2/λ2)XT

−SPXSX−S , so the components of z have variances bounded by

σ2n

λ2
Λmax(PXS ) ≤ σ2n

λ2
.

Therefore, again by the maximal Gaussian inequality, for any δ > 0, it holds with probability
at least 1− δ that

∥∥∥ 1

λ
XT
−S
(
I −XS(XT

SXS)−1XT
S

)
ε+XT

−SXS(XT
SXS)−1sign(β0,S)

∥∥∥
∞

≤ σ

λ

√
2n log (e(p− s0)/δ) + (1− γ)

= 1 +

(
σ

λ

√
2n log (e(p− s0)/δ)− γ

)

︸ ︷︷ ︸
b

,

Thus as long as b < 0, we can see that the subgradient condition (33) is verified

So it remains to choose λ so that a, b < 0. For λ ≥ (2σ/γ)
√

2n log(ep/δ), we can see that

a ≤ 2λ− 4λ < 0, b ≤ γ/2− γ < 0,

so (32), (33) are verified—and hence lasso estimator recovers the correct support and signs—
with probability at least 1− 2δ

4.4 A note on the conditions

• As we moved from the slow rates, to fast rates, to support recovery, the assumptions we used
just got stronger and stronger. For the slow rates, we essentially assumed nothing about the
predictor matrix X except for column normalization. For the fast rates, we had to additionally
assume a compatibility or restricted eigenvalue condition, which roughly speaking, limited the
correlations of the predictor variables (particularly concentrated over the underlying support
S). For support recovery, we still needed whole lot more. The minimum eigenvalue condition
on (1/n)(XT

SXS)−1 is somewhat like the restricted eigenvalue condition on X. But the mutual
incoherence condition is even stronger; it requires the regression coefficients

ηj(S) = (XT
SXS)−1XT

SXj ,

given by regressing each Xj on the truly active variables XS , to be small (in `1 norm) for all
j /∈ S. In other words, no truly inactive variables can be highly correlated (or well-explained,
in a linear projection sense) by any of the truly active variables. Finally, this minimum signal
condition ensures that the nonzero entries of the true coefficient vector β0 are big enough to
detect. This is quite restrictive and is not needed for risk bounds, but it is crucial to support
recovery

4.5 Minimax bounds

• Under the data model (2) with X fixed, subject to the scaling ‖Xj‖22 ≤ n, for j = 1, . . . , p, and
ε ∼ N(0, σ2), Raskutti et al. (2011) derive upper and lower bounds on the minimax prediction
error

M(s0, n, p) = inf
β̂

sup
‖β0‖0≤s0

1

n
‖Xβ̂ −Xβ0‖22.
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(Their analysis is acutally considerably more broad than this and covers the coefficient error
‖β̂ − β0‖2, as well `q constraints on β0, for q ∈ [0, 1].) They prove that, under no additional
assumptions on X,

M(s0, n, p) .
s0 log(p/s0)

n
,

with probability tending to 1

• They also prove that, under a type of restricted eigenvalue condition in which

c0 ≤
(1/n)‖Xv‖22
‖v‖22

≤ c1for all v ∈ Rp such that ‖v‖0 ≤ 2s0,

for some constants c0 > 0 and c1 <∞, it holds that

M(s0, n, p) &
s0 log(p/s0)

n
,

with probability at least 1/2

• The implication is that, for some X, minimax optimal prediction may be able to be performed
at a faster rate than s0 log(p/s0)/n; but for low correlations, this is the rate we should expect.
(This is consistent with the worst-case-X analysis of Foster & George (1994), who actually
show the worst-case behavior is attained in the orthogonal X case)

5 Friends, enemies, extensions (you decide which is which)

5.1 Stepwise regression

• Forward stepwise regression is an old method that dates back to Efroymson (1966), Draper
& Smith (1966), if not earlier. Unlike the lasso, ridge regression, or best subset selection, the
forward stepwise regression estimator is defined directly by an iterative algorithm, instead of
by (the solution of) an optimization problem. We begin with an empty active model A0 = ∅
and an estimate β̂(0) = 0 of the regression coefficients. Then for k = 1, 2, 3, . . ., we repeat the
following steps:

1. Find

jk = argmax
j /∈Ak−1

XT
j P
⊥
Ak−1

y

‖P⊥Ak−1
Xj‖2

, (34)

where P⊥Ak−1
= I − PAk−1

, and PAk−1
is shorthand for PXAk−1

, the projection onto the
column space of XAk−1

2. Update Ak = Ak−1 ∪ {jk}, and

β
(k)
Ak

= (XT
Ak
XAk)−1XT

Ak
y,

β
(k)
−Ak = 0

(35)

• The variable jk in (34), to enter the active set, maximizes the absolute correlation with the
residual from step k− 1. Equivalently, this is the variable that minimizes the training error at
step k, among all variables that we could have added to Ak−1; i.e., an equivalent definition is

jk = argmin
j /∈Ak−1

‖P⊥Ak−1∪{j}y‖
2
2
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• The k-step forward stepwise estimator (35), like the subset selection estimator (10), just per-
forms least squares on the active set Ak, and does not apply shrinkage. Unlike best subset
selection, the set Ak is chosen sequentially and is not general optimally (in the sense of mini-
mizing the training error over all active sets of size k)

• There are several related stepwise methods from the signal processing literature, such as or-
thogonal matching pursuit. This algorithm replaces the definition of jk in (34) with

jk = argmax
j /∈Ak−1

XT
j P
⊥
Ak−1

y,

hence it looks at inner products with the residual, rather than correlations with the residual,
as its entry criterion

• Theory for stepwise regression (or orthogonal matching pursuit) is generally more complicated
than theory is for the lasso, but several comparable results certainly exist in the statistics (or
signal processing) literature

5.2 Stagewise regression

• Forward stagewise regression is similar to forward stepwise regression, but much less greedy.
As with stepwise, we begin with β(0) = 0. Now repeat for k = 1, 2, 3, . . ., the following steps:

1. Find
jk = argmax

j=1,...p
|XT

j (y −Xβ(k−1))| (36)

2. Update
β(k) = β(k−1) + ε · sign

(
XT
jk

(y −Xβ(k−1))
)
· ejk (37)

Above, ε > 0 is a small constant (e.g., ε = 0.01), called the step size or learning rate, and ej
denotes the jth standard basis vector in Rp

• Once it has selected a variable jk, as in (36), forward stagewise regression only increments
the coefficient of Xjk by ε. This “slow learning” property is a key difference between forward
stagewise regression and forward stepwise regression. (The latter performs a full least squares
fit after each time it selects a variable.) While both are greedy algorithms, stepwise is much
greedier; after k iterations, it produces a model with exactly k active variables; on the other
hand, stagewise typically requires many iterations to produce estimates of reasonable interest

• According to Hastie et al. (2009) forward stagewise was historically dismissed by statisticians
as being “inefficient” and hence less useful than methods like forward or backward stepwise.
This is perhaps understandable, if we keep in mind the limited computational resources of the
time. From a modern perspective, however, we now appreciate that “slow learning” is a form
of regularization which can of course present considerable statistical benefits

• Furthermore, by modern standards, forward stagewise is computationally cheap: to trace out
a path of regularized estimates, we repeat very simple iterations, each one requiring (at most)
p inner products, computations that could be trivially parallelized

• Unlike forward stepwise, whose estimates usually deviative substantially from lasso estimates,
forward stagewise estimates are often surprisingly close to those from the lasso solution path.
See Figure 4 for an example
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Figure 4: A simple example comparing forward stagewise regression (with ε = 0.01) to the lasso path

• This connection is explained by the seminal work of Efron et al. (2004), who showed that the
infintesimal forward stagewise path (i.e., the limit of the stagewise path as ε → 0) can be
computed by modifying Algorithm 1, which as we saw, computes the lasso path. Recall that
the update to the lasso coefficients in Step 1 can be alternatively written as in (21), where we
move the lasso coefficients along the direction of the least squares fit of the residual r(λk) on
XA. For infintesimal stagewise, we change this update to

β̂A(λ) = β̂A(λk) +
λk − λ
λk

vA,

β̂−A(λ) = 0,

where the direction vA is defined by the nonnegative least squares problem

vA = argmin
v∈R|A|

‖r(λk)−XAv‖22 subject to vAsA ≥ 0,

ie., it is the least squares coefficients of the current residual r(λk) on XA, where we constrain
the coefficients to have signs matching sA = sign(XT

Ar(λk)). With this modification, and also
dropping Step 3 altogether, we get the infintesimal stagewise path

• This connection can be also explained more simply, by rewriting the stagewise steps in (36),
(37) as

β(k) = β(k−1) + ∆(k),

where ∆(k) = argmin
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ ε,

with f(β) = (1/2)‖y−Xβ‖22 denoting the least squares loss function. Thus, at each iteration,
forward stagewise moves in a direction that minimizes the inner product with the gradient of
f , among all directions constrained to have a small `1 norm, and so the sequence of stagewise
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estimates balances (small) decreases in the loss f with (small) increases in the `1 norm, which
is just like the lasso solution path. See Tibshirani (2015) for more development of this idea

• Stagewise regression is sometimes called ε-boosting, and is closely related to gradient boosting
where the weak learners are the variables Xj , j = 1, . . . , p themselves (instead of trees built
from the variables, the typical choice). Another closely related method is least squares boosting,
which simply replaces the stagewise update in (37) with

β(k) = β(k−1) + ε ·
(
XT
jk

(y −Xβ(k−1))
)
· ejk ,

i.e., which uses the value of the inner product itself (rather than simply its sign), serving as a
kind of automatic step size tuning

5.3 Relaxed lasso

• As we have discussed periodically throughout, and seen explicitly in (15), the lasso coefficients
are shrunken towards zero. Depending on the scenario, such bias in the coefficient estimates
may be significant and undesirable

• The relaxed lasso Meinshausen (2007) is an attempt to fix this, and is defined with two tuning
parameters: λ ≥ 0 and α ∈ [0, 1]. Having computed the lasso solution β̂lasso at λ, with active
set A = supp(β̂lasso), the relaxed lasso estimate β̂relaxed at λ, α solves the problem

min
β∈Rp

1

2
‖y −Xβ‖22 + αλ‖β‖1 subject to β−A = 0, (38)

i.e., we solve a reduced lasso problem, in which we allows ourselves only to fit on the original
active variables XA, but relax the amount of shrinkage by taking the penalty parameter to be
αλ < λ, when α < 1

• Note that when α = 0, the solution in (38) is simply β̂relaxed = (XT
AXA)−1XT

Ay. This is often
referred to (somewhat confusingly) as the relaxed lasso. It is also sometimes called the debiased
lasso, or least squares after lasso. From our previous discussion on uniqueness, we know that
when the columns of X are in general position, this least squares estimate will be well-defined
(as XA will always have full column rank)

• In general, the active sets of the relaxed lasso solutions in (38) could depart from A, as we
take α < 1, i.e., we could in principle select fewer variables than the original lasso estimate.
This may be a good or bad thing. A simpler (alternative) definition for the relaxed lasso, that
doesn’t share this property, is

β̃relaxed
A = αβ̂lasso

A + (1− α)(XT
AXA)−1XT

Ay,

β̃relaxed
−A = 0.

This is just linear interpolation between the lasso coefficients and the least squares coefficients
on the active set. Using the form of the lasso solution in (15), we can also express this as

β̃relaxed
A = (XT

AXA)−1XT
Ay − αλ(XT

AXA)−1sA,

β̃relaxed
−A = 0,

so we are just “undoing” the lasso shrinkage term λ(XT
AXA)−1sA, as we are multiplying it by

a factor α < 1
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5.4 Adaptive lasso

• Another way to reduce the bias in the lasso estimator is to weight the `1 penalty so that the
coefficients we expect to be large (in magnitude) receive a smaller penalty. Zou (2006) defined
the adaptive lasso to do just this, as the solution β̂adapt of the weighted lasso problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ

p∑

j=1

wj |βj |, (39)

for weights wj = 1/|β̂init
j |γ , j = 1, . . . , p, where β̂init is some initial estimate of the regression

coefficients, and γ > 0 is another tuning parameter

• The initial estimate β̂init could come from (say) ridge regression or the lasso itself. Note that
when the initial estimate β̂init has zero components, this makes some weights infinite, which
we would formally handle by introducing equality constraints into the problem (39). Hence,
since the active set of the adaptive lasso solution β̂adapt is always a subset of that of β̂init, we
would typically avoid making the initial estimate β̂init super sparse; e.g., if β̂init is fit via the
lasso, then we might want to use a bit less regularization in the initial lasso problem

• The original work of Zou (2006) considered the predictor dimension p fixed, and showed that
if β̂init was chosen to be a

√
n-consistent estimator of the regression coefficients (which could

be given simply, e.g., by least squares), then the adaptive lasso enjoys what is known as the
oracle property for variable selection and estimation procedures

• This property is defined as follows: assuming the data model (2), with X fixed, ε ∼ N(0, σ2),
and S = supp(β0), an estimator β̂ is said to have the oracle property provided

(i) it selects the correct variables, supp(β̂) = S, with probability tending to 1, and

(ii) the estimate β̂S over the support is such that
√
n(β̂S − β0,S) converges in distribution to

a centered normal variate with the “right” covariance matrix, σ2(XT
SXS)−1 (which is the

same as what the oracle estimator, least squares on XS , would give us)

• Even when p is fixed, the Knight & Fu (2000), Zou (2006) showed that the lasso fails to meet
both of the two properties simultaneously. In order for the rate of convergence of β̂ − β0 to be√
n, they showed that the tuning parameter must scale as λ � √n, yet in this case it selects

incorrect variables with positive asymptotic probability. Zou (2006) then established that the
adaptive lasso remedies this issue, so long as we take β̂init to be itself a

√
n-consistent of β0,

or much more broadly, satisfy an(β̂init − β0) = OP(1) for a sequence an →∞

• Work since has extended the theory to the high-dimensional case, in which p diverges with n,
and has connected the adaptive lasso closely to the nonconvex SCAD estimator

5.5 Nonconvex penalties

• Yet another way to improve on the bias inherent to the lasso coefficients is to replace the `1
penalty in (8) for a nonconvex penalty defined around a nonconvex function P : [0,∞) → R,
and then instead solve a nonconvex optimization problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ

p∑

j=1

P (|βj |). (40)

Of course, the `0 norm, in which P (t) = 1{t 6= 0}, already fit this framework, but it presented
(extreme) computational difficulties
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• One might think that the natural candidates for nonconvex penalties are the `γ , γ < 1 norms,
in which P (t) = tγ , γ < 1 (these are also called bridge or power penalties). But these actually
present greater computational difficulties when compared to other choices such as SCAD (Fan
& Li 2001) and MC+ (Zhang 2010), defined as

λP (t) =

∫ t

0

(
1{t ≤ λ}+

γλ− x
(γ − 1)λ

1{t > λ}
)
dx (SCAD)

λP (t) =

∫ t

0

(
1− x

γλ

)

+

dx (MC+)

respectively, where γ > 2 for SCAD, and γ > 1 for MC+. Plots of the `γ , SCAD, and MC+
penalties, along with their thresholding functions (which determine the solution in (40) when
X is orthogonal) are given in Figure 5

(a) ℓγ

Penalty Threshold Functions

ℓγ, γ = 0.001

ℓγ, γ = 0.001

ℓγ , γ = 0.3

ℓγ , γ = 0.3

ℓγ , γ = 0.7

ℓγ , γ = 0.7

ℓγ , γ = 1.0

ℓγ , γ = 1.0

β β̃

(b) Log

Penalty Threshold Functions

β β̃

γ = 0.01

γ = 0.01

γ = 1

γ = 1

γ = 10

γ = 10

γ = 30000

γ = 30000

(c) SCAD

Penalty Threshold Functions

β β̃

γ = 2.01γ = 2.01
γ = 2.3γ = 2.3
γ = 2.7γ = 2.7
γ = 200γ = 200

(d) MC+

Penalty Threshold Functions

β β̃

γ = 1.01γ = 1.01
γ = 1.7γ = 1.7
γ = 3

γ = 3 γ = 100
γ = 100

Figure 2: Non-Convex penalty families and their corresponding threshold functions. All
are shown with λ = 1 and different values for γ.

(d) The MC+ family of penalties (Zhang 2010) is defined by

λP (t; λ; γ) = λ

∫ |t|

0

(1− x

γλ
)+ dx

= λ(|t|− t2

2λγ
) I(|t| < λγ) +

λ2γ

2
I(|t| ≥ λγ). (12)

For each value of λ > 0 there is a continuum of penalties and threshold opera-
tors, varying from γ →∞ (soft threshold operator) to γ → 1+ (hard threshold
operator). The MC+ is a reparametrization of the firm shrinkage operator
introduced by Gao & Bruce (1997) in the context of wavelet shrinkage.

Other examples of non-convex penalties include the transformed ℓ1 penalty (Nikolova
2000) and the clipped ℓ1 penalty (Zhang 2009).

Although each of these four families bridge ℓ1 and ℓ0, they have different proper-
ties. The two in the top row in Figure 2, for example, have discontinuous univariate
threshold functions, which would cause instability in coordinate descent. The thresh-
old operators for the ℓγ, log-penalty and the MC+ form a continuum between the soft
and hard-thresholding functions. The family of SCAD threshold operators, although
continuous, do not include H(·, λ). We study some of these properties in more detail
in Section 4.

6

Figure 5: Plots of the `γ , log, SCAD, MC+ nonconvex families of penalties, and their threhsolding
functions, taken from Mazumder et al. (2011)

• SCAD and MC+ have some theoretical advantages, such as the oracle property (as defined in
the last subsection), over the lasso. Of course, the caveat is that we can’t generically compute
a global minimizer of their respective nonconvex problems; but the theory has developed to
accomodate this, to varying degrees, depending on the specific theoretical statement. E.g., in
some instances, statistical properties can be proved for the local minimizers found by simple
iterative algorithms. A neat connection: performing one step of a local linearization algorithm
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to compute the SCAD estimator is actually just the adaptive lasso, where β̂init is itself (a kind
of) lasso estimate

• There are many other formulations for nonconvex regularization (in regression and beyond).
The literature on this just as large (it seems) as that on `1 regularization, and so there is a lot
more out there and this was just a very brief introduction

5.6 Group lasso

• If we are interested in selecting groups of variables rather than individual variables to form a
working linear model, then we can use the group lasso (Bakin 1999, Yuan & Lin 2006), which
is defined as the solution of the convex problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ

G∑

g=1

√
pg‖βg‖2. (41)

Here β = (β1, . . . , βG) denotes a block partition of the parameter β, where each block corre-
sponds to a grouping of the variables, and pg is the length of the gth block, for g = 1, . . . , G.
The `2 penalty induces group sparsity at the solution, i.e., it will be the case that β̂g = 0 for
many groups g, and more so for larger λ

• A highly related problem is that of multi-task learning (Argyriou et al. 2006, Obozinski et al.
2010), where the same predictor variables are used across multiple regression problems (i.e.,
with multiple responses), and we want to perform variable selection in a uniform way across
the problem. To do so, we could define groups based on the coefficients corresponding to the
same variable across the multiple regressions, and solve a very similar problem to (41)

• Another useful application of the group lasso is sparse additive modeling (Lin & Zhang 2006,
Ravikumar et al. 2009). In the most basic form, here we construct a basis matrix Hj ∈ Rn×Nj
for each dimension j of the predictor space, having entries

(Hj)i` = hj`(xij), i = 1, . . . , n, ` = 1, . . . , Nj ,

where Nj is a number of basis functions (say, to be chosen by the user), for j = 1, . . . , p. We
then solve (41) with X = [H1, . . . ,Hp], the columnwise concatenation of H1, . . . ,Hd, and we
define groups β = (β1, . . . , βG) just based on the coefficient blocks for each one of these basis
matrices. That is, the group lasso problem (41) becomes

min
β∈Rp

1

2

∥∥∥∥y −
p∑

j=1

Hjβj

∥∥∥∥
2

2

+ λ

p∑

j=1

√
Nj‖βj‖2.

The estimated additive function is then given by the basis expansion

f̂(x1, . . . , xp) =

p∑

j=1

Nj∑

`=1

β̂j`hj`(xj),

and group sparsity of β̂ = (β̂1, . . . , β̂p) means that f̂ will depend on a selectively small number
of the dimensions j = 1, . . . , p
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5.7 Lasso with missing data

• Consider once again the standard lasso problem (8), but suppose now that the entries of the
predictor matrix X are missing at random, independently, each one missing with probability
ρ ∈ [0, 1). How should we proceed in forming a sparse working linear model, with something
like the lasso? It first helps to rewrite (8) as

min
β∈Rp

1

2
βT Σ̂β − α̂T y + nλ‖β‖1, (42)

where we define Σ̂ = XTX/n and α̂ = XT y/n. We can view these quantities as plug-in esti-
mates of Σ = E(x0x

T
0 ) and α = E(x0y0), for (x0, y0) drawn from the same joint distribution

as the i.i.d. training pairs (xi, yi), = 1, . . . , n. Assuming w.l.o.g. that E(x0) = 0, notice that Σ
is the sample covariance matrix of the predictors, and α is the sample covariance between the
predictors and the response

• When X is not fully observed, we can still form unbiased estimates of Σ and α. Let us define
a matrix Z to have entries

Zij =

{
Xij if Xij is observed

0 otherwise,
i = 1, . . . , n, j = 1, . . . , p,

and define Z̃ = Z/(1− ρ). It is not hard to see that

Σ̃ =
Z̃T Z̃

n
− ρ · diag

(
Z̃T Z̃

n

)
and α̃ =

Z̃T y

n

are unbiased estimates of Σ and α, respectively. Thus the natural thing to do, it seems, is to
replace Σ̂, α̂ in the lasso problem (42) with Σ̃, α̃, i.e., to solve

min
β∈Rp

1

2
βT Σ̃β − α̃T y + nλ‖β‖1 (43)

• However, unlike the lasso problem (42), the missing-data-lasso problem (43) is not necessarily
convex, because Σ̃ is not necessarily positive definite; indeed, for a large enough probability ρ
of missingness, it will have negative eigenvalues

• Loh & Wainwright (2012) show that, provided that we use an additional `1 constraint in (43)
(important since, if Σ̃ has negative eigenvalues, then the criterion in (43) will be unbounded
from below), the missing-data-lasso problem has appealing theoretical and computational prop-
erties, despite its nonconvexity. Under conditions similar to those we discussed previously in
the derivation of fast rates for the lasso, these authors prove that the missing-data-lasso esti-
mator has risk properties in line with those in the fullly observed case. Further, they prove it
is good enough to use a simple proximal gradient descent algorithm to obtain a local minimizer
of (43), as it will share the same statistical properties as the global minimizer
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