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PAC Learning and ERM

Standard framework for supervised learning: hypothesis space, loss and risk. Let X be the input space and
Y be the output space, a supervised learning try to learn a function that maps an input to an output based
on example input-output pairs.

• Rigorously, given a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn) sampled (independently and
identically) from an unknown distribution PX,Y, a learning algorithm seeks a function h : X → Y , where
X is the input space and Y is the output space and h belong a set H of functions mapping from X to Y
(which we refer to as the hypothesis space).

• In order to measure how well a function fits the training data, a loss function L : Y ×Y → R≥0 is defined.
For training example (xi, yi) and a hypothesis h, the loss of predicting the value h(xi) is L(h(xi), yi).

• This pre-defined loss function induces a risk function on H, defined as

R(h) := E(X,Y)∼P[L(h(X), Y)].

For a hypothesis h, R(h) is the expected loss incurred per sample when h is used to make prediction.

• The “optimal hypothesis” h∗, whose performance we wish to replicate, is the the minimizer over H of the
risk function R(h).

Empirical risk minimizer (ERM)
As mentioned above, an algorithm takes as input a finite sequence of training samples

(x1, y1), (x2, y2), . . . , (xn, yn) and outputs a function from X → Y . The most standard algorithm is the
empirical risk minimizer (ERM), which outputs

ĥn = min
h∈H

Rn(h)

where

Rn(h) =
1
n

n

∑
i=1

L(h(xi), yi)

is the empirical risk.
The main idea of ERM is that since

Rn(h) =
1
n

n

∑
i=1

L(yi, h(xi)) ≈ E(X,Y)∼P[L(Y, h(X))] = R(h),

minimizing Rn(h) will have a similar effect as minimizing R(h). However, we observe (through simulation)
that ERM doesn’t always work as expected, and we need a good theory to better understand why and how
it fails. In other to establish that rigorously, we need to quantify explicitly the event for which Rn(h) is close
to R(h) for each hypothesis h.
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PAC Learning. The probably approximately correct (PAC) learning model typically states as follows: we say
that ĥn is ϵ-accurate with probability 1 − δ if

P
[

R(ĥn)− inf
h∈H

R(h) > ϵ

]
< δ.

In other words, we have R(ĥn)− infh∈H R(h) ≤ ϵ with probability at least (1 − δ).

Hoeffding’s inequality

Concentration inequalities provide bounds on how a random variable deviates from some value (typically,
its expected value). In this section, we sketch the main steps to derive a class of concentration inequalities
for bounded random variables.

The underlying idea is to upper-bound a tail probability P[X ≥ t] by controlling the moments of the
random variable X.

Theorem 1 (Markov inequality). For any nonnegative random variable X and ϵ > 0,

P[X ≥ ϵ] ≤ E[X]

ϵ
.

Theorem 2. For any random variable X, ϵ > 0 and t > 0

P[X ≥ ϵ] ≤ E[etX ]

etϵ .

Theorem 3. If random variable X has mean zero and is bounded in [a, b], then for any s > 0,

E[etX ] ≤ exp
(

t2(b − a)2

8

)
.

Theorem 4 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be i.i.d copies of a random variable X ∈ [a, b], and ϵ > 0,

P
[∣∣∣∣X1 + X2 + . . . + Xn

n
− E[X]

∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
− nϵ2

2(b − a)2

)
.

Proof. We have

P
[

X1 + X2 + . . . + Xn

n
− E[X] ≥ ϵ

]
= P [(X1 + X2 + . . . + Xn)− E[X1 + X2 + . . . + Xn] ≥ nϵ]

≤ exp(−tnϵ)E[et[(X1+X2+...+Xn)−E[X1+X2+...+Xn ]]]

= exp(−tnϵ)
n

∏
i=1

E[et[Xi−E[Xi ]]]

≤ exp
(
−tnϵ + n

t2(b − a)2

2

)
Note: We can apply Theorem 3 for Xi − EXi in the bounds aobve because

E[Xi − EXi] = 0 and − (b − a) ≤ Xi − EXi ≤ (b − a).
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The quadratic expression (in t) attains maximum value at

t =
ϵ

(b − a)2 .

Replacing this value of t in the inequality, we deduce that

P
[

X1 + X2 + . . . + Xn

n
− E[X] ≥ ϵ

]
≤ exp

(
− nϵ2

2(b − a)2

)
.

Using a similar argument, we also have

P
[

X1 + X2 + . . . + Xn

n
− E[X] ≤ −ϵ

]
≤ exp

(
− nϵ2

2(b − a)2

)
.

The combination of those two estimates completes the proof.

Generalization bound for finite hypothesis space and bounded loss.

Assume that

• the loss function L is bounded, that is

0 ≤ L(y, y′) ≤ c ∀y, y′ ∈ Y

• the hypothesis space is a finite set, that is

H = {h1, h2, . . . , hm}.

Using the Hoeffding’s inequality, for any h ∈ H and ϵ > 0 we have

P[|Rn(h)− R(h)| ≥ ϵ] ≤ 2 exp
(
−nϵ2

2c2

)
.

Thus

P[∃h ∈ H : |Rn(h)− R(h)| ≥ ϵ] ≤ 2|H| exp
(
−nϵ2

2c2

)
.

This means that, with probability at least

1 − 2|H| exp
(
−nϵ2

2c2

)
.

we have
R(ĥn)− R(h∗) = [R(ĥn)− Rn(ĥn)] + [Rn(ĥn)− Rn(h∗)] + [Rn(h∗)− R(h∗)] ≤ 2ϵ

(note that the second term is non-positive by the definition of the ERM).
Thus, for any δ > 0 and ϵ > 0, by choosing

n =
2c2

ϵ2 log
(

2|H|
δ

)
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then ĥn is ϵ-accurate with probability 1 − δ, i.e.

P
[

R(ĥn)− inf
h∈H

R(h) > 2ϵ

]
< δ.

Corollary. If we quantify the error in term of number of samples, then

R(ĥn) ≤ R(h∗) +
c√
n

√
8 log

(
2
δ

)
+ 8 log(|H|).

Generalization bound using covering number

We know that for finite hypothesis space and bounded loss, if we quantify the error in term of number of
samples, then

|Rn(h)− R(h)| ≤ c√
n

√
2 log

(
2
δ

)
+ 2 log(|H|), ∀h ∈ H

with probability at least 1 − δ.
What about infinite hypothesis class?

Assumption. In this note, we assume that H is a metric space with distance d defined on it. For ϵ > 0,
we denote by N (ϵ,H, d) the covering number of (H, d); that is, N (ϵ,H, d) is the minimal number of balls of
radius ϵ needed to cover H. We denote by Hϵ a finite subset of H such that H is contained in the union of
balls of radius ϵ and |Hϵ| = N (ϵ,H, d).

Note: If H is a dk−dimensional manifold/algebraic surface, then we now that

N (ϵ,H, d) = O
(

ϵ−k
)

Assume further that the loss function L satisfies:

|L(h(x), y)− L(h′(x), y)| ≤ Cd(h, h′) ∀, x ∈ X ; y ∈ Y ; h, h′ ∈ H

Generalization bound using covering number.
We first note that if

n =
8c2

ϵ2 log
(

2|Hϵ|
δ

)
then the event

|Rn(h)− R(h)| ≤ ϵ, ∀h ∈ Hϵ

happens with probability at least 1 − δ.
Under this event, consider any h ∈ H, then there exists h0 ∈ Hϵ such that d(h, h0) ≤ ϵ. This means

|Rn(h)− Rn(h0)| ≤ Cd(h, h0)

and
|R(h)− R(h0)| ≤ Cd(h, h0).
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This implies that
|Rn(h)− R(h)| ≤ (2C + 1)ϵ ∀h ∈ H.

We conclude that for all ϵ > 0, δ > 0, if

n =
8c2

ϵ2 log
(

2N (ϵ,H, d)
δ

)
then

|Rn(h)− R(h)| ≤ (2C + 1)ϵ ∀h ∈ H.

with probability at least 1 − δ.
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